Mô hình hóa các nanoreactor nhạy cảm với kích thích: kiểm soát tỷ lệ hợp lý hướng tới thiết kế các enzyme keo

Molecular Systems Design and Engineering - Tập 5 Số 3 - Trang 602-619
Matej Kanduč1,2,3, Won Kyu Kim4,5,6, Rafael Roa7,8,9,10,11, Joachim Dzubiella12,13,14,15,16
1Jožef Stefan Institute
2SI-1000 Ljubljana
3Slovenia
4Korea Institute for Advanced Study, 85 Hoegiro, Seoul 02455, Republic of Korea
5Republic of Korea
6Seoul 02455
7Departamento de Física Aplicada I
8E-29071 Málaga
9Facultad de Ciencias
10Spain
11UNIVERSIDAD DE MÁLAGA
12D-14109 Berlin
13D-79104 Freiburg
14Germany
15Institut für Physik, Albert-Ludwigs-Universität Freiburg
16Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany

Tóm tắt

Các nanoreactor polymer nhạy cảm cho thấy mối quan hệ phức tạp giữa cấu trúc, tính chất và chức năng, điều này yêu cầu các phương pháp mô hình hóa và mô phỏng đa quy mô để thiết kế tối ưu và phát triển hơn nữa hướng tới 'enzyme keo'.

Từ khóa


Tài liệu tham khảo

Petrosko, 2016, J. Am. Chem. Soc., 138, 7443, 10.1021/jacs.6b05393

Stuart, 2010, Nat. Mater., 9, 101, 10.1038/nmat2614

Campisi, 2016, Catalysts, 6, 185, 10.3390/catal6120185

Lu, 2011, Prog. Polym. Sci., 36, 767, 10.1016/j.progpolymsci.2010.12.003

Carregal-Romero, 2010, Chem. Mater., 22, 3051, 10.1021/cm903261b

Hervés, 2012, Chem. Soc. Rev., 41, 5577, 10.1039/c2cs35029g

Wu, 2012, Angew. Chem., Int. Ed., 51, 2229, 10.1002/anie.201106515

Jia, 2016, J. Mater. Chem. A, 4, 9677, 10.1039/C6TA03528K

Prieto, 2016, Chem. Rev., 116, 14056, 10.1021/acs.chemrev.6b00374

Gaitzsch, 2015, Chem. Rev., 116, 1053, 10.1021/acs.chemrev.5b00241

Vriezema, 2005, Chem. Rev., 105, 1445, 10.1021/cr0300688

Renggli, 2011, Adv. Funct. Mater., 21, 1241, 10.1002/adfm.201001563

Tanner, 2011, Acc. Chem. Res., 44, 1039, 10.1021/ar200036k

Guan, 2011, Soft Matter, 7, 6375, 10.1039/c0sm01541e

Liu, 2016, ACS Catal., 6, 3084, 10.1021/acscatal.6b00106

Montolio, 2016, ACS Catal., 6, 7230, 10.1021/acscatal.6b01759

Zinchenko, 2016, J. Nanopart. Res., 18, 1, 10.1007/s11051-016-3480-4

Lu, 2006, Angew. Chem., Int. Ed., 45, 813, 10.1002/anie.200502731

Zhang, 2010, Macromol. Mater. Eng., 295, 1049, 10.1002/mame.201000204

Contreras-Cáceres, 2008, Adv. Mater., 20, 1666, 10.1002/adma.200800064

Li, 2016, J. Phys. Chem. C, 120, 4902, 10.1021/acs.jpcc.5b11724

Haruta, 2003, Chem. Rec., 3, 75, 10.1002/tcr.10053

Hutchings, 2005, Appl. Catal., A, 291, 2, 10.1016/j.apcata.2005.05.044

Zhang, 2012, Chem. Rev., 112, 2467, 10.1021/cr200260m

D. Astruc , in Nanoparticles and Catalysis , ed. D. Astruc , Wiley-VCH Verlag GmbH , Weinheim, Germany , 2008 , ch. 1, pp. 1–48

Zhao, 2013, Coord. Chem. Rev., 257, 638, 10.1016/j.ccr.2012.09.002

Li, 2014, Angew. Chem., Int. Ed., 53, 1756, 10.1002/anie.201300441

Boisselier, 2009, Chem. Soc. Rev., 38, 1759, 10.1039/b806051g

Taylor, 2014, Nanomedicine, 9, 1971, 10.2217/nnm.14.139

Sharma, 2004, Macromol. Rapid Commun., 25, 547, 10.1002/marc.200300107

Mei, 2005, Langmuir, 21, 12229, 10.1021/la052120w

Antonels, 2013, Langmuir, 29, 13433, 10.1021/la402885k

Crooks, 2001, Acc. Chem. Res., 34, 181, 10.1021/ar000110a

Anderson, 2015, Acc. Chem. Res., 48, 1351, 10.1021/acs.accounts.5b00125

Deraedt, 2014, J. Am. Chem. Soc., 136, 12092, 10.1021/ja5061388

Esumi, 2002, J. Colloid Interface Sci., 254, 402, 10.1006/jcis.2002.8580

Bingwa, 2014, J. Phys. Chem. C, 118, 19849, 10.1021/jp505571p

Bingwa, 2015, J. Mol. Catal. A: Chem., 396, 1, 10.1016/j.molcata.2014.09.019

Noh, 2014, Appl. Surf. Sci., 320, 400, 10.1016/j.apsusc.2014.09.058

Noh, 2015, Appl. Catal., A, 497, 107, 10.1016/j.apcata.2015.02.039

Pozun, 2013, J. Phys. Chem. C, 117, 7598, 10.1021/jp312588u

Johnson, 2013, J. Phys. Chem. C, 117, 22644, 10.1021/jp4041474

Gross, 2014, Top. Catal., 57, 812, 10.1007/s11244-014-0243-2

Calvo, 2010, Langmuir, 26, 5559, 10.1021/la9038304

Brock, 1998, Chem. Mater., 10, 2619, 10.1021/cm980227h

Ballauff, 2006, Curr. Opin. Colloid Interface Sci., 11, 316, 10.1016/j.cocis.2006.12.002

Ballauff, 2007, Prog. Polym. Sci., 32, 1135, 10.1016/j.progpolymsci.2007.05.002

Cao, 2015, Langmuir, 31, 9483, 10.1021/acs.langmuir.5b02279

Lu, 2009, Macromol. Chem. Phys., 210, 377, 10.1002/macp.200800608

Ballauff, 2007, Polymer, 48, 1815, 10.1016/j.polymer.2007.02.004

Lu, 2009, J. Mater. Chem., 19, 3955, 10.1039/b822673n

Wu, 2012, Ind. Eng. Chem. Res., 51, 5608, 10.1021/ie2025147

Lu, 2013, Curr. Opin. Biotechnol., 24, 639, 10.1016/j.copbio.2012.11.013

M. Resmini , K.Flavin and D.Carboni , in Molecular Imprinting, Springer , 2010 , pp. 307–342

Jia, 2015, J. Mater. Chem. A, 3, 6187, 10.1039/C5TA00197H

Welsch, 2009, J. Phys. Chem. B, 113, 16039, 10.1021/jp907508w

Lu, 2006, Angew. Chem., Int. Ed., 45, 813, 10.1002/anie.200502731

Lu, 2006, J. Phys. Chem. B, 110, 3930, 10.1021/jp057149n

Yang, 2015, Colloid Polym. Sci., 293, 2405, 10.1007/s00396-015-3642-4

Shi, 2014, J. Phys. Chem. B, 118, 7177, 10.1021/jp5027477

Chang, 2015, Chem. Commun., 51, 10502, 10.1039/C5CC03543K

Liu, 2015, Colloid Interface Sci. Commun., 4, 1, 10.1016/j.colcom.2014.12.001

Tang, 2015, Mater. Chem. Phys., 149, 460, 10.1016/j.matchemphys.2014.10.045

Plazas-Tuttle, 2015, Nanomaterials, 5, 1102, 10.3390/nano5021102

Wu, 2015, Chem. Commun., 51, 16068, 10.1039/C5CC06386H

Plamper, 2017, Acc. Chem. Res., 50, 131, 10.1021/acs.accounts.6b00544

Gu, 2014, J. Phys. Chem. C, 118, 18618, 10.1021/jp5060606

Pelton, 2000, Adv. Colloid Interface Sci., 85, 1, 10.1016/S0001-8686(99)00023-8

Khokhlov, 1980, Polymer, 21, 376, 10.1016/0032-3861(80)90005-1

Erman, 1986, Macromolecules, 19, 2342, 10.1021/ma00163a003

A. Khokhlov , S.Starodubtzev and V.Vasilevskaya , in Responsive gels: Volume transitions I , Springer , 1993 , pp. 123–171

Barenbrug, 1995, Polym. Gels Networks, 3, 331, 10.1016/0966-7822(94)00002-O

Heskins, 1968, J. Macromol. Sci., Chem., 2, 1441, 10.1080/10601326808051910

Dušek, 1968, J. Polym. Sci., Polym. Phys. Ed., 6, 1209

Habicht, 2015, J. Polym. Sci., Part B: Polym. Phys., 53, 1112, 10.1002/polb.23743

Zhou, 1996, Macromolecules, 29, 4998, 10.1021/ma9516807

Wu, 1997, Macromolecules, 30, 574, 10.1021/ma960499a

Angioletti-Uberti, 2015, J. Phys. Chem. C, 119, 15723, 10.1021/acs.jpcc.5b03830

Pradhan, 2002, Colloids Surf., A, 196, 247, 10.1016/S0927-7757(01)01040-8

Aditya, 2015, Chem. Commun., 51, 9410, 10.1039/C5CC01131K

Zhao, 2015, Coord. Chem. Rev., 287, 114, 10.1016/j.ccr.2015.01.002

Galanti, 2016, Phys. Chem. Chem. Phys., 18, 20758, 10.1039/C6CP01179A

Roa, 2017, ACS Catal., 7, 5604, 10.1021/acscatal.7b01701

Smoluchowski, 1917, Z. Phys. Chem., 92, 129

Debye, 1942, Trans. Electrochem. Soc., 82, 265, 10.1149/1.3071413

Wilemski, 1973, J. Chem. Phys., 58, 4009, 10.1063/1.1679757

Calef, 1983, Annu. Rev. Phys. Chem., 34, 493, 10.1146/annurev.pc.34.100183.002425

Hänggi, 1990, Rev. Mod. Phys., 62, 251, 10.1103/RevModPhys.62.251

Yasuda, 1969, Makromol. Chem., 126, 177, 10.1002/macp.1969.021260120

Robeson, 1991, J. Membr. Sci., 62, 165, 10.1016/0376-7388(91)80060-J

Williams, 1995, J. Membr. Sci., 107, 1, 10.1016/0376-7388(95)00102-I

Diamond, 1974, J. Membr. Biol., 17, 121, 10.1007/BF01870176

Palasis, 1992, J. Controlled Release, 18, 1, 10.1016/0168-3659(92)90205-6

Gehrke, 1997, Ann. N. Y. Acad. Sci., 831, 179, 10.1111/j.1749-6632.1997.tb52194.x

Pandey, 2001, Prog. Polym. Sci., 26, 853, 10.1016/S0079-6700(01)00009-0

George, 2001, Prog. Polym. Sci., 26, 985, 10.1016/S0079-6700(00)00036-8

Ulbricht, 2006, Polymer, 47, 2217, 10.1016/j.polymer.2006.01.084

Baker, 2014, Macromolecules, 47, 6999, 10.1021/ma501488s

Park, 2017, Science, 356, 1137, 10.1126/science.aab3896

Guesta, 2007, Comput. Methods Appl. Mech. Eng., 196, 1006, 10.1016/j.cma.2006.08.006

Atci, 2011, J. Phys. Chem. C, 115, 6833, 10.1021/jp200429x

Falk, 2015, Nat. Commun., 6, 6949, 10.1038/ncomms7949

Obliger, 2016, J. Phys. Chem. Lett., 7, 3712, 10.1021/acs.jpclett.6b01684

Shannon, 2008, Nature, 452, 301, 10.1038/nature06599

Geise, 2011, J. Membr. Sci., 369, 130, 10.1016/j.memsci.2010.11.054

Tansel, 2006, Sep. Purif. Technol., 51, 40, 10.1016/j.seppur.2005.12.020

Brazel, 1999, Polymer, 40, 3383, 10.1016/S0032-3861(98)00546-1

Stamatialis, 2008, J. Membr. Sci., 308, 1, 10.1016/j.memsci.2007.09.059

Kim, 2017, Macromolecules, 50, 6227, 10.1021/acs.macromol.7b01206

Kim, 2019, Phys. Rev. Lett., 122, 108001, 10.1103/PhysRevLett.122.108001

Kanduč, 2017, Phys. Chem. Chem. Phys., 19, 5906, 10.1039/C6CP08366H

Milster, 2019, Phys. Chem. Chem. Phys., 21, 6588, 10.1039/C8CP07601D

Kanduč, 2018, Macromolecules, 51, 4853, 10.1021/acs.macromol.8b00735

Kanduč, 2019, J. Phys. Chem. B, 123, 720, 10.1021/acs.jpcb.8b10134

Garcia-Viloca, 2004, Science, 303, 186, 10.1126/science.1088172

Ramsey, 2009, Science, 324, 651, 10.1126/science.1171641

P. Atkins and J.de Paula , Physical Chemistry , ed. W. H. Freeman and Company , 2010

Aydt, 2000, J. Chem. Phys., 112, 5480, 10.1063/1.481114

Lu, 2002, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 66, 1

Netz, 1997, J. Chem. Phys., 107, 9221, 10.1063/1.475214

Erbaş, 2015, ACS Macro Lett., 4, 857, 10.1021/acsmacrolett.5b00363

Erbaş, 2016, Macromolecules, 49, 9026, 10.1021/acs.macromol.6b01416

Li, 2016, Macromolecules, 49, 9239, 10.1021/acs.macromol.6b01276

Heyda, 2013, Macromolecules, 46, 1231, 10.1021/ma302320y

Mukherji, 2013, Macromolecules, 46, 9158, 10.1021/ma401877c

Mukherji, 2014, Nat. Commun., 5, 4882, 10.1038/ncomms5882

Rodríguez-Ropero, 2015, J. Phys. Chem. B, 119, 15780, 10.1021/acs.jpcb.5b10684

Rodríguez-Ropero, 2015, Phys. Chem. Chem. Phys., 17, 8491, 10.1039/C4CP05314A

Rika, 1990, Phys. Rev. Lett., 65, 657, 10.1103/PhysRevLett.65.657

Lee, 1997, Macromolecules, 30, 6559, 10.1021/ma9704469

Heyda, 2017, J. Am. Chem. Soc., 139, 863, 10.1021/jacs.6b11082

Yasuda, 1968, Makromol. Chem., 118, 19, 10.1002/macp.1968.021180102

Yasuda, 1969, Makromol. Chem., 125, 108, 10.1002/macp.1969.021250111

Masaro, 1999, Prog. Polym. Sci., 24, 731, 10.1016/S0079-6700(99)00016-7

Amsden, 1998, Macromolecules, 31, 8382, 10.1021/ma980765f

Pérez-Mas, 2018, Phys. Chem. Chem. Phys., 20, 2814, 10.1039/C7CP07679G

Cai, 2015, Macromolecules, 48, 847, 10.1021/ma501608x

Rotenberg, 2006, J. Chem. Phys., 124, 154701, 10.1063/1.2194014

Zhang, 2017, ACS Macro Lett., 6, 864, 10.1021/acsmacrolett.7b00339

Zhang, 2017, J. Chem. Phys., 146, 194906, 10.1063/1.4983224

Kekenes-Huskey, 2016, J. Phys. Chem. B, 120, 8696, 10.1021/acs.jpcb.6b03887

Leo, 1971, Chem. Rev., 71, 525, 10.1021/cr60274a001

Haus, 1987, Phys. Rep., 150, 263, 10.1016/0370-1573(87)90005-6

Ghosh, 2014, Phys. Chem. Chem. Phys., 17, 1847, 10.1039/C4CP03599B

Wu, 2009, J. Phys. Chem. B, 113, 3512, 10.1021/jp808145x

Börjesson, 2013, Polymer, 54, 2988, 10.1016/j.polymer.2013.03.065

Karlsson, 2004, Polymer, 45, 3893, 10.1016/j.polymer.2003.12.082

Müller-Plathe, 1998, Ber. Bunsenges. Phys. Chem., 102, 1679, 10.1002/bbpc.19981021131

Müller-Plathe, 1998, J. Membr. Sci., 141, 147, 10.1016/S0376-7388(97)00289-5

Fritz, 1997, Polymer, 38, 1035, 10.1016/S0032-3861(96)00600-3

Kucukpinar, 2003, Polymer, 44, 3607, 10.1016/S0032-3861(03)00166-6

Rodríguez-Ropero, 2014, J. Phys. Chem. B, 118, 7327, 10.1021/jp504065e

Schroer, 2016, Phys. Chem. Chem. Phys., 18, 31459, 10.1039/C6CP05991K

Adroher-Benítez, 2017, J. Chem. Phys., 146, 194905, 10.1063/1.4983525

Deshmukh, 2009, Soft Matter, 5, 1514, 10.1039/b816443f

Boţan, 2016, J. Phys. Chem. B, 120, 3434, 10.1021/acs.jpcb.6b00228

Pérez-Fuentes, 2015, Soft Matter, 11, 5077, 10.1039/C5SM00750J

Aydt, 2000, J. Chem. Phys., 112, 5480, 10.1063/1.481114

Escobedo, 1997, J. Chem. Phys., 106, 793, 10.1063/1.473166

Escobedo, 1999, Phys. Rep., 318, 85, 10.1016/S0370-1573(99)00012-5

Sandrin, 2016, Phys. Chem. Chem. Phys., 18, 12860, 10.1039/C5CP07781H

Masoud, 2010, Macromolecules, 43, 10117, 10.1021/ma102052m

Hansing, 2018, Macromolecules, 51, 7608, 10.1021/acs.macromol.8b01494

Hansing, 2018, Biophys. J., 114, 2653, 10.1016/j.bpj.2018.04.041

Hansing, 2018, Nano Lett., 18, 5248, 10.1021/acs.nanolett.8b02218

Zhou, 2009, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 79, 021801, 10.1103/PhysRevE.79.021801

Horinek, 2011, J. Phys. Chem. A, 115, 6125, 10.1021/jp1110086

Dong, 1990, J. Controlled Release, 13, 21, 10.1016/0168-3659(90)90071-Z

Sasaki, 1999, Macromolecules, 32, 4619, 10.1021/ma990121n

Raccis, 2011, Soft Matter, 7, 7042, 10.1039/c0sm01438a

Kaneko, 1995, J. Membr. Sci., 101, 13, 10.1016/0376-7388(94)00268-4

Dong, 1986, J. Controlled Release, 4, 223, 10.1016/0168-3659(86)90006-4

Tamai, 1994, Macromolecules, 27, 4498, 10.1021/ma00094a011

Fukuda, 1998, J. Chem. Phys., 109, 6476, 10.1063/1.477293

Goudeau, 2004, Macromolecules, 37, 8072, 10.1021/ma049848o

Marque, 2008, Macromolecules, 41, 3349, 10.1021/ma702173j

Kanduç, 2019, ACS Nano, 13, 11224, 10.1021/acsnano.9b04279

M. Karelson , Molecular Descriptors in QSAR/QSPR , Wiley-Interscience , 2000

Tanford, 1979, Proc. Natl. Acad. Sci. U. S. A., 76, 4175, 10.1073/pnas.76.9.4175

Ashbaugh, 2006, Rev. Mod. Phys., 78, 159, 10.1103/RevModPhys.78.159

Hansch, 1991, Chem. Rev., 91, 165, 10.1021/cr00002a004

Takeuchi, 1990, J. Chem. Phys., 93, 2062, 10.1063/1.459083

Müller-Plathe, 1991, J. Chem. Phys., 94, 3192, 10.1063/1.459788

Cai, 2011, Macromolecules, 44, 7853, 10.1021/ma201583q

Bénichou, 2005, J. Chem. Phys., 123, 194506, 10.1063/1.2109967

Roa, 2018, J. Chem. Phys., 148, 065705, 10.1063/1.5016608

del Razo, 2018, J. Chem. Phys., 149, 044102, 10.1063/1.5037060