Modeling of gasification process of Indian coal in perspective of underground coal gasification (UCG)
Tóm tắt
In the present study, the steam gasification of Indian coal and its demineralized coal were investigated in a specially designed fixed-bed reactor, to determine the intrinsic kinetics parameters with optimum operating temperature and partial pressures of steam in the perspective of underground coal gasification (UCG). The gasification reactivity of a chosen coal was higher compared to the demineralized coal and the reason could be mineral content of ash present in the coal. A one-dimensional unsteady kinetic model was developed for the steam gasification process in a fixed-bed reactor. The intrinsic kinetic parameters for steam gasification and water–gas shift reaction are estimated by fitting the developed models with the experimental data.
Tài liệu tham khảo
Bhaskaran, S., Ganesh, A., Mahajani, S., Aghalayam, P., Sapru, R. K., & Mathur, D. K. (2013). Comparison between two types of Indian coals for the feasibility of Underground Coal Gasification through laboratory scale experiments. Fuel, 113, 837–843. https://doi.org/10.1016/j.fuel.2013.05.080.
Chen, Z., Dun, Q., Shi, Y., Lai, D., Zhou, Y., Gao, S., et al. (2017). High quality syngas production from catalytic coal gasification using disposable Ca(OH)2 catalyst. Chemical Engineering Journal, 316, 842–849. https://doi.org/10.1016/j.cej.2017.02.025.
Daggupati, S., Mandapati, R. N., Mahajani, S. M., Ganesh, A., Sapru, R. K. K., Sharma, R. K. K., et al. (2011). Laboratory studies on cavity growth and product gas composition in the context of underground coal gasification. Energy, 36(3), 1776–1784. https://doi.org/10.1016/j.energy.2010.12.051.
Dupont, C., Nocquet, T., Augusto, J., Costa, D., & Verne-tournon, C. (2011). Kinetic modelling of steam gasification of various woody biomass chars: Influence of inorganic elements. Bioresource Technology, 102, 9743–9748. https://doi.org/10.1016/j.biortech.2011.07.016.
Fermoso, J., Gil, M. V. V., Pevida, C., Pis, J. J. J., & Rubiera, F. (2010). Kinetic models comparison for non-isothermal steam gasification of coal—Biomass blend chars. Chemical Engineering Journal, 161, 276–284. https://doi.org/10.1016/j.cej.2010.04.055.
Ghodke, P., & Mandapati, R. N. R. N. (2017). Kinetic modeling of Indian rice husk pyrolysis. International Journal of Chemical Reactor Engineering, 16(2), 1–15. https://doi.org/10.1515/ijcre-2017-0048.
Ghodke, P., & Mandapati, R. N. (2019). Investigation of particle level kinetic modeling for babul wood pyrolysis. Fuel, 236, 1008–1017. https://doi.org/10.1016/j.fuel.2018.09.084.
Huang, Z., Zhang, J., Zhao, Y., Zhang, H., & Yue, G. (2010). Kinetic studies of char gasification by steam and CO2 in the presence of H2 and CO. Fuel Processing Technology, 91, 843–847. https://doi.org/10.1016/j.fuproc.2009.12.020.
Kajitani, S., Hara, S., & Matsuda, H. (2002). Gasification rate analysis of coal char with a pressurized drop tube furnace. Fuel, 81, 539–546.
Karimi, A., Semagina, N., & Gray, M. R. (2011). Kinetics of catalytic steam gasification of bitumen coke. Fuel, 90(3), 1285–1291. https://doi.org/10.1016/j.fuel.2010.12.006.
Kong, Y., Kim, J., Chun, D., Lee, S., Rhim, Y., Lim, J., et al. (2014). Comparative studies on steam gasification of ash-free coals and their original raw coals. International Journal of Hydrogen Energy, 39(17), 9212–9220. https://doi.org/10.1016/j.ijhydene.2014.04.054.
Lee, W.-J., Kim, S.-D., & Song, B.-H. (2002). Steam gasification of an australian bituminous coal in a fluidized bed. Korean Journal of Chemical Engineering, 19(6), 1091–1096. https://doi.org/10.1007/BF02707238.
Mahinpey, N., Murugan, P., Mani, T., & Raina, R. (2009). Analysis of bio-oil, biogas, and biochar from pressurized pyrolysis of wheat straw using a tubular reactor. Energy & Fuels, 23(5), 2736–2742. https://doi.org/10.1021/ef8010959.
Mandapati, R. N., Daggupati, S., Mahajani, S. M., Aghalayam, P., Sapru, R. K., Sharma, R. K., et al. (2012). Experiments and kinetic modeling for CO2 gasification of Indian coal chars in the context of underground coal gasification. Industrial Engineering Chemistry Research, 51, 15041–15052.
Miura, K., Hashimoto, K., & Silveston, P. L. (1989). Factors affecting the reactivity of coal chars during gasification, and indices representing reactivity. Fuel, 68(11), 1461–1475. https://doi.org/10.1016/0016-2361(89)90046-X.
Phuhiran, C., Takarada, T., & Chaiklangmuang, S. (2014). Hydrogen-rich gas from catalytic steam gasification of eucalyptus using nickel-loaded Thai brown coal char catalyst. International Journal of Hydrogen Energy, 39(8), 3649–3656. https://doi.org/10.1016/j.ijhydene.2013.12.155.
Roberts, D. G., & Harris, D. J. (2000). Char gasification with O2, CO2, and H2O: effects of pressure on intrinsic reaction kinetics. Energy & Fuels, 14(2), 483–489.
Saleh, S. B., Flensborg, J. P., Shoulaifar, T. K., Sárossy, Z., Hansen, B. B., Egsgaard, H., et al. (2014). Release of chlorine and sulfur during biomass torrefaction and pyrolysis. Energy and Fuels, 28(6), 3738–3746. https://doi.org/10.1021/ef4021262.
Sekine, Y., Ishikawa, K., Kikuchi, E., Matsukata, M., & Akimoto, A. (2006). Reactivity and structural change of coal char during steam gasification. Fuel, 85(2), 122–126.
Smoliński, A., Howaniec, N., & Stańczyk, K. (2011). A comparative experimental study of biomass, lignite and hard coal steam gasification. Renewable Energy, 36(6), 1836–1842. https://doi.org/10.1016/j.renene.2010.12.004.
Sueyasu, T., Oike, T., Mori, A., Kudo, S., Norinaga, K., & Hayashi, J. (2012). Simultaneous steam reforming of tar and steam gasification of char from the pyrolysis of potassium-loaded woody biomass. Energy and Fuels, 26(1), 199–208. https://doi.org/10.1021/ef201166a.
Sutardi, T., Paul, M. C., & Karimi, N. (2019). Investigation of coal particle gasification processes with application leading to underground coal gasification. Fuel, 237, 1186–1202. https://doi.org/10.1016/j.fuel.2018.10.058.
Takarada, T., Tamai, Y., & Tomita, A. (1985). Reactivities of 34 coals under steam gasification. Fuel, 64, 1438–1442.
Tanner, J., & Bhattacharya, S. (2016). Kinetics of CO2 and steam gasification of Victorian brown coal chars. Chemical Engineering Journal, 285, 331–340. https://doi.org/10.1016/j.cej.2015.09.106.
Wang, J., Jiang, M., Yao, Y., Zhang, Y., & Cao, J. (2009). Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen without formation of methane. Fuel, 88(9), 1572–1579. https://doi.org/10.1016/j.fuel.2008.12.017.
Yan, L., Cao, Y., & He, B. (2018). On the kinetic modeling of biomass/coal char co-gasification with steam. Chemical Engineering Journal, 331(August), 435–442. https://doi.org/10.1016/j.cej.2017.08.125.
Zagorščak, R., An, N., Palange, R., Green, M., Krishnan, M., & Thomas, H. R. (2019). Underground coal gasification: A numerical approach to study the formation of syngas and its reactive transport in the surrounding strata. Fuel, 253(April), 349–360. https://doi.org/10.1016/j.fuel.2019.04.164.
Zhang, L., Kudo, S., Tsubouchi, N., Hayashi, J., Ohtsuka, Y., & Norinaga, K. (2013). Catalytic effects of Na and Ca from inexpensive materials on in situ steam gasification of char from rapid pyrolysis of low rank coal in a drop-tube reactor. Fuel Processing Technology, 113, 1–7. https://doi.org/10.1016/j.fuproc.2013.03.009.
Zou, C., Chen, Y., Kong, L., Sun, F., Chen, S., & Dong, Z. (2019). Underground coal gasification and its strategic significance to the development of natural gas industry in China. Petroleum Exploration and Development, 46(2), 205–215. https://doi.org/10.1016/S1876-3804(19)60002-9.