Modeling of chemically active particles at an air–liquid interface

The European Physical Journal E - Tập 44 - Trang 1-12 - 2021
Shun Imamura1,2,3, Toshihiro Kawakatsu1
1Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan
2Mathematics for Advanced Materials-OIL, AIST-Tohoku University, Sendai, Japan
3Department of Chemical Engineering, Kyoto University, Kyoto, Japan

Tóm tắt

The collective motion of chemically active particles at an air–liquid interface is studied theoretically as a dynamic self-organization problem. Based on a physical consideration, we propose a minimal model for self-propelled particles by combining hydrodynamic interaction, capillary interaction, driving force by Marangoni effect, and Marangoni flow. Our model has successfully captured the features of chemically active particles, that represent dynamic self-organized states such as crystalline, chain, liquid-like and spreading states.

Tài liệu tham khảo

T. Vicsek, A. Zafeiris, Phys. Rep. 517(3–4), 71 (2012) M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Rev. Mod. Phys. 85(3), 1143 (2013) G. Gompper, R.G. Winkler, T. Speck, A. Solon, C. Nardini, F. Peruani, H. Löwen, R. Golestanian, U.B. Kaupp, L. Alvarez et al., J. Phys.: Condens. Matter 32(19), 193001 (2020) M.N. Popescu, Langmuir 36(25), 6861 (2020) E. Lauga, T.R. Powers, Rep. Prog. Phys. 72(9), 096601 (2009) D.L. Koch, G. Subramanian, Ann. Rev. Fluid Mech. 43, 637 (2011) W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K. St. Angelo, Y. Cao, T.E. Mallouk, P.E. Lammert, V.H. Crespi, J. Am. Chem. Soc. 126(41), 13424 (2004) S.J. Ebbens, J.R. Howse, Soft Matter 6(4), 726 (2010) C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Rev. Mod. Phys. 88(4), 045006 (2016) A. Zöttl, H. Stark, J. Phys. Condens. Matter 28(25), 253001 (2016) M.I. Kohira, Y. Hayashima, M. Nagayama, S. Nakata, Langmuir 17(22), 7124 (2001) M. Nagayama, S. Nakata, Y. Doi, Y. Hayashima, Physica D 194(3–4), 151 (2004) H. Kitahata, S. Hiromatsu, Y. Doi, S. Nakata, M.R. Islam, Phys. Chem. Chem. Phys. 6(9), 2409 (2004) S. Nakata, M. Nagayama, H. Kitahata, N.J. Suematsu, T. Hasegawa, Phys. Chem. Chem. Phys. 17(16), 10326 (2015) D. Boniface, C. Cottin-Bizonne, R. Kervil, C. Ybert, F. Detcheverry, Phys. Rev. E 99(6), 062605 (2019) M.M. Hanczyc, T. Toyota, T. Ikegami, N. Packard, T. Sugawara, J. Am. Chem. Soc. 129(30), 9386 (2007) T. Toyota, N. Maru, M.M. Hanczyc, T. Ikegami, T. Sugawara, J. Am. Chem. Soc. 131(14), 5012 (2009) S. Tanaka, Y. Sogabe, S. Nakata, Phys. Rev. E 91, 032406 (2015) C.C. Maass, C. Krüger, S. Herminghaus, C. Bahr, Annu. Rev. Condens. Matter Phys. 7, 171 (2016) S. Soh, K.J. Bishop, B.A. Grzybowski, J. Phys. Chem. B 112(35), 10848 (2008) Y.S. Ikura, E. Heisler, A. Awazu, H. Nishimori, S. Nakata, Phys. Rev. E 88(1), 012911 (2013) H. Nishimori, N.J. Suematsu, S. Nakata, J. Phys. Soc. Jpn. 86(10), 101012 (2017) K. Nagai, Y. Sumino, H. Kitahata, K. Yoshikawa, Phys. Rev. E 71(6), 065301 (2005) Y.J. Chen, Y. Nagamine, K. Yoshikawa, Phys. Rev. E 80(1), 016303 (2009) S. Tanaka, S. Nakata, T. Kano, J. Phys. Soc. Jpn. 86(10), 101004 (2017) T. Kano, K. Osuka, T. Kawakatsu, A. Ishiguro, J. Phys. Soc. Jpn. 86(12), 124004 (2017) S. Yabunaka, T. Ohta, N. Yoshinaga, J. Chem. Phys. 136(7), 074904 (2012) Y.S. Ikura, R. Tenno, H. Kitahata, N.J. Suematsu, S. Nakata, J. Phys. Chem. B 116(3), 992 (2012) H. Masoud, M.J. Shelley, Phys. Rev. Lett. 112(12), 128304 (2014) K. Nishi, K. Wakai, T. Ueda, M. Yoshii, Y.S. Ikura, H. Nishimori, S. Nakata, M. Nagayama, Phys. Rev. E 92(2), 022910 (2015) S. Nakata, R. Tenno, A. Deguchi, H. Yamamoto, Y. Hiraga, S. Izumi, Colloids Surf. A Physicochem. Eng. Asp. 466, 40 (2015) Y. Matsuda, N.J. Suematsu, H. Kitahata, Y.S. Ikura, S. Nakata, Chem. Phys. Lett. 654, 92 (2016) A. Domínguez, P. Malgaretti, M. Popescu, S. Dietrich, Soft Matter 12(40), 8398 (2016) S. Yabunaka, N. Yoshinaga, J. Fluid Mech. 806, 205 (2016) H. Kitahata, N. Yoshinaga, J. Chem. Phys. 148(13), 134906 (2018) Y. Hirose, Y. Yasugahira, M. Okamoto, Y. Koyano, H. Kitahata, M. Nagayama, Y. Sumino, J. Phys. Soc. Jpn. 89(7), 074004 (2020) J. Rotne, S. Prager, J. Chem. Phys. 50(11), 4831 (1969) H. Yamakawa, J. Chem. Phys. 53(1), 436 (1970) G. Perkins, R. Jones, Phys. A 171(3), 575 (1991) A. Domínguez, P. Malgaretti, M.N. Popescu, S. Dietrich, Phys. Rev. Lett. 116(7), 078301 (2016) S. Nakata, Y. Hayashima, H. Komoto, Phys. Chem. Chem. Phys. 2(10), 2395 (2000) Y. Hayashima, M. Nagayama, S. Nakata, J. Phys. Chem. B 105(22), 5353 (2001) P.A. Kralchevsky, K. Nagayama, Langmuir 10(1), 23 (1994) J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54(12), 5237 (1971) R. Jones, B. Felderhof, J. Deutch, Macromolecules 8(5), 680 (1975) L. Landau, E.Lifshitz, Fluid Mechanics (Pergamon, N.Y., 1959) A. Dörr, S. Hardt, H. Masoud, H.A. Stone, J. Fluid Mech. 790, 607 (2016) N.J. Suematsu, T. Sasaki, S. Nakata, H. Kitahata, Langmuir 30(27), 8101 (2014) S. Michelin, E. Lauga, D. Bartolo, Phys. Fluids 25(6), 061701 (2013) P. De Buyl, A.S. Mikhailov, R. Kapral, EPL (Europhysics Letters) 103(6), 60009 (2013)