Modeling of additive manufacturing processes for metals: Challenges and opportunities

Current Opinion in Solid State and Materials Science - Tập 21 Số 4 - Trang 198-206 - 2017
Marianne Francois1, Ailing Sun2, Wayne E. King3, Neil J. Henson1, D. Tourret1, Curt A. Bronkhorst1, Neil Carlson1, Christopher K. Newman1, Benoı̂t Haut1, József Bakosi1, John W. Gibbs1, Veronica Livescu1, Scott Vander Wiel1, Amy J. Clarke1, Mark Schraad1, Ted D. Blacker2, Hojun Lim2, Theron Rodgers2, Steven J. Owen2, Fadi Abdeljawad2, Jonathan D Madison2, A. T. Anderson, Jean‐Luc Fattebert, Robert M. Ferencz, N.E. Hodge1, Saad A. Khairallah1, Otis R. Walton2
1Los Alamos National Laboratory; USA
2Sandia National Laboratories, USA
3LAWRENCE LIVERMORE NATIONAL LABORATORY, USA,

Tóm tắt

Từ khóa


Tài liệu tham khảo

Gray, 2015, Structure/property (constitutive and dynamic strength/damage) characterization of additively manufactured 316L SS, EPJ Web Conf., 94, 02006, 10.1051/epjconf/20159402006

Wu, 2014, An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel, Metall. Mater. Trans. A, 45, 6260, 10.1007/s11661-014-2549-x

D.L. Bourell, M.C. Leu, D.W. Rosen, Roadmap for Additive Manufacturing Identifying the Future of Freeform Processing, Austin TX, 2009.

Energetics Incorporated, Measurement Science Roadmap for Metal-Based Additive Manufacturing, Columbia, Maryland, 2013.

R. Berger, Additive manufacturing a game changer for the manufacturing industry? Munich, 2013.

S. Srivatsa, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, 2014.

Manvatkar, 2015, Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process, Mater. Sci. Technol., 31, 924, 10.1179/1743284714Y.0000000701

Zheng, 2008, Thermal behavior and microstructural evolution during laser deposition with laser-engineered net shaping: Part I. Numerical calculations, Metall. Mater. Trans. A, 39, 2228, 10.1007/s11661-008-9557-7

Farshidianfar, 2016, Effect of real-time cooling rate on microstructure in Laser Additive Manufacturing, J. Mater. Process. Technol., 231, 468, 10.1016/j.jmatprotec.2016.01.017

Z. Fan, F. Liou, Numerical Modeling of the Additive Manufacturing (AM) Processes of Titanium Alloy.

Martukanitz, 2014, Towards an integrated computational system for describing the additive manufacturing process for metallic materials, Addit. Manuf., 1, 52

Michaleris, 2014, Modeling metal deposition in heat transfer analyses of additive manufacturing processes, Finite Elem. Anal. Des., 86, 51, 10.1016/j.finel.2014.04.003

https://github.com/truchas.

C. McCallen, ALE3D: Arbitrary Lagrange Eulerian Three-and Two Dimensional Modeling and Simulation Capability, Livermore, CA, Report No. LLNL-ABS-565212, 2012.

D. Steinberg, Lawrence Livermore National Laboratory report UCRL-MA-106439 change 1, 1996.

Anisimov, 1995

Yadroitsev, 2010, J. Mater. Process. Technol., 210, 1624, 10.1016/j.jmatprotec.2010.05.010

Khairallah, 2014, J. Mater. Process. Technol., 214, 2627, 10.1016/j.jmatprotec.2014.06.001

King, 2015, Appl. Phys. Rev., 2, 041304, 10.1063/1.4937809

Khairallah, 2016, Acta Mater., 108, 36, 10.1016/j.actamat.2016.02.014

Cundall, 1979, A discrete numerical model for granular assemblies, Geotechnique, 29, 47, 10.1680/geot.1979.29.1.47

Parteli, 2016, Particle-based simulation of powder application in additive manufacturing, Powder Technol., 288, 96, 10.1016/j.powtec.2015.10.035

Silbert, 2001, Granular flow down an inclined plane: Bagnold scaling and rheology, Phys. Rev. E, 64, 051302, 10.1103/PhysRevE.64.051302

E. Herbold, O. Walton, M. Homel, A. Rubenchik, W. King, Simulation of Powder Bed Layer Spreading in Additive Manufacturing, 2016 Solid Freeform Fabrication Symposium, Austin, TX, 2016.

Mindt, 2016, Metall. Mater. Trans. A, 1

J.M. Solberg, N.E. Hodge, R.M. Ferencz, I.D. Parsons, M.A. Puso, M.A. Havstad, R.A. Whitesides, A.P. Wemhoff, Diablo user manual, Livermore, CA, Report No. LLNL-SM-651163, 2014.

Hodge, 2014, Comput. Mech., 54, 33, 10.1007/s00466-014-1024-2

Gusarov, 2009, J. Heat Transf.-Trans. ASME, 131, 072101, 10.1115/1.3109245

Karma, 2016, Atomistic to continuum modeling of solidification microstructures, Curr. Opin. Solid State Mater. Sci., 20, 25, 10.1016/j.cossms.2015.09.001

Hoyt, 2003, Atomistic and continuum modeling of dendritic solidification, Mater. Sci. Eng. R: Rep., 41, 121, 10.1016/S0927-796X(03)00036-6

Boettinger, 2002, Phase-field simulation of solidification, Annu. Rev. Mater. Res., 32, 163, 10.1146/annurev.matsci.32.101901.155803

Moelans, 2008, CALPHAD, 32, 268, 10.1016/j.calphad.2007.11.003

Shimokawabe, 2011, 1

C.K. Newman, M.M. Francois, An Implicit Approach to Phase Field Modeling of Solidification for Additively Manufactured Materials, Los Alamos Technical Report, LA-UR-16-24310, 2016.

A.J. Trainer, C.K. Newman, M.M. Francois, Overview of the Tusas Code for Simulation of Dendritic Solidification, Los Alamos Technical Report, LA-UR-16-20078, 2016.

Dorr, 2010, J. Comput. Phys., 229, 626, 10.1016/j.jcp.2009.09.041

Fattebert, 2014, Acta Mater., 62, 89, 10.1016/j.actamat.2013.09.036

Pusztai, 2005, EPL (Europhys. Lett.), 71, 131, 10.1209/epl/i2005-10081-7

Rappaz, 1993, Probabilistic modelling of microstructure formation in solidification processes, Acta Metall. Mater., 41, 345, 10.1016/0956-7151(93)90065-Z

Gandin, 2010, Modeling of solidification: grain structures and segregations in metallic alloys, C.R. Phys., 11, 216, 10.1016/j.crhy.2010.07.010

Chen, 2016, Three-dimensional cellular automaton-finite element modeling of solidification grain structures for arc-welding processes, Acta Mater., 10.1016/j.actamat.2016.05.011

Tourret, 2013, Multiscale dendritic needle network model of alloy solidification, Acta Mater., 61, 6474, 10.1016/j.actamat.2013.07.026

Tourret, 2015, Three-dimensional multiscale modeling of dendritic spacing selection during Al-Si directional solidification, JOM, 67, 1776, 10.1007/s11837-015-1444-2

See <http://spparks.sandia.gov>.

Rodgers, 2016, Predicting mesoscale microstructural evolution in electron beam welding, JOM, 68, 1419, 10.1007/s11837-016-1863-8

See <http://dream3d.bluequartz.net>.

Bronkhorst, 1992, Polycrystalline plasticity and the evolution of crystallographic texture in FCC Metals, Philos. Trans. R. Soc. Lond. A, 341, 443, 10.1098/rsta.1992.0111

Kalidindi, 1992, Crystallographic texture evolution in bulk deformation processing of FCC metals, J. Mech. Phys. Solids, 40, 537, 10.1016/0022-5096(92)80003-9

Bronkhorst, 2007, Modeling the microstructural evolution of metallic polycrystalline materials under localization conditions, J. Mech. Phys. Solids, 55, 2351, 10.1016/j.jmps.2007.03.019

Hansen, 2010, Dislocation subgrain structures and modeling the plastic hardening of metallic single crystals, Modell. Simul. Mater. Sci. Eng., 18, 055001, 10.1088/0965-0393/18/5/055001

Bronkhorst, 2010, Modeling and characterization of grain scale strain distribution in polycrystalline tantalum, Comput. Mater. Continua, 17, 149

Hansen, 2013, A dislocation-based multi-rate single crystal plasticity model, Int. J. Plasticity, 44, 129, 10.1016/j.ijplas.2012.12.006

Lebensohn, 2013, Modeling void growth in polycrystalline materials, Acta Mater., 61, 6918, 10.1016/j.actamat.2013.08.004

Mayeur, 2007, A three-dimensional crystal plasticity model for duplex Ti–6Al–4V, Int. J. Plast, 23, 1457, 10.1016/j.ijplas.2006.11.006

Mayeur, 2008, Crystal plasticity simulations of fretting of Ti-6Al-4V in partial slip regime considering effects of texture, Comput. Mater. Sci., 41, 356, 10.1016/j.commatsci.2007.04.020

Mayeur, 2013, An evaluation of higher-order single crystal strength models for constrained thin films subjected to simple shear, J. Mech. Phys. Solids, 61, 1935, 10.1016/j.jmps.2013.04.007

Mayeur, 2014, A comparison of Gurtin type and micropolar theories of generalized single crystal plasticity, Int. J. Plast, 57, 29, 10.1016/j.ijplas.2014.01.010

Mayeur, 2015, Incorporating interface affected zones into crystal plasticity, Int. J. Plast, 65, 206, 10.1016/j.ijplas.2014.08.013

Mayeur, 2015, Micropolar crystal plasticity simulation of particle strengthening, Modell. Simul. Mater. Sci. Eng., 23, 065007, 10.1088/0965-0393/23/6/065007

Mayeur, 2016, Numerical implementation of a crystal plasticity model with dislocation transport for high strain rate applications, Modell. Simul. Mater. Sci. Eng., 24, 45013, 10.1088/0965-0393/24/4/045013

Lim, 2016, Incorporating physically-based microstructures in material modeling: bridging phase field and crystal plasticity frameworks, Modell. Simul. Mater. Sci. Eng., 24, 045016, 10.1088/0965-0393/24/4/045016

Luscher, 2010, A second gradient theoretical framework for hierarchical multiscale modeling of materials, Int. J. Plasticity, 26, 1248, 10.1016/j.ijplas.2010.05.006

Alleman, 2015, Distributed-enhanced homogenization framework and model for heterogeneous elasto-plastic problems, J. Mech. Phys. Solids, 85, 176, 10.1016/j.jmps.2015.09.012

Teddy D. Blacker, Joshua Robbins, Steven J. Owen, Miguel Alejandro Aguilovalentin, Brett W. Clark, Thomas Eugene Voth, PLATO Platinum Topology Optimization, Sandia National Laboratories Technical Report, SAND2015-10065PE, 2015.

Robbins, 2016, An efficient process for generating topologically optimized cellular structures, Addit. Manuf., 12, 296

http://www.3ds.com/products-services/simulia/products/tosca/.

http://www.sciartsoft.com/paretoworks/.

Mirzendehdel, 2016, Support structure constrained topology optimization for additive manufacturing, Comput.-Aided Des., 10.1016/j.cad.2016.08.006

Mirzendehdel, 2015, A pareto-optimal approach to multi-material topology optimization, J. Mech. Des., 137, 10.1115/1.4031088

Zhang, 2015, Efficient design-optimization of variable-density hexagonal cellular structure by additive manufacturing: theory and validation, ASME J. Manuf. Sci. Eng., 137, 021004, 10.1115/1.4028724