Modeling of a membraneless single-chamber microbial fuel cell with molasses as an energy source
Tóm tắt
Từ khóa
Tài liệu tham khảo
Logan, B.E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., Rabaey, K.: Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40(17), 5181–5192 (2006). doi: 10.1021/es0605016
Pant, D., van Bogaert, G., Diels, L., Vanbroekhoven, K.: A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 101(6), 1533–1543 (2010). doi: 10.1016/j.biortech.2009.10.017
Liu, H., Logan, B.E.: Electricity generation using an air–cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 38(14), 4040–4046 (2004). doi: 10.1021/es0499344
Binkley, W.W., Wolform, M.L.: Composition of cane juice and cane final molasses. In: Claude, S.H., Melville, L.W. (eds.) Advances in Carbohydrate Chemistry, vol. 8, pp. 291–314. Academic Press, New York (1953)
Kato Marcus, A., Torres, C.I., Rittmann, B.E.: Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnol. Bioeng. 98(6), 1171–1182 (2007). doi: 10.1002/bit.21533
Picioreanu, C., Head, I.M., Katuri, K.P., van Loosdrecht, M.C.M., Scott, K.: A computational model for biofilm-based microbial fuel cells. Water Res. 41(13), 2921–2940 (2007). doi: 10.1016/j.watres.2007.04.009
Zeng, Y., Choo, Y.F., Kim, B.-H., Wu, P.: Modelling and simulation of two-chamber microbial fuel cell. J. Power Sources 195(1), 79–89 (2010). doi: 10.1016/j.jpowsour.2009.06.101
Merkey, B.V., Chopp, D.L.: The performance of a microbial fuel cell depends strongly on anode geometry: a multidimensional modeling study. Bull. Math. Biol. 74(4), 834–857 (2012). doi: 10.1007/s11538-011-9690-0
Olbrich, H.: The Molasses. Biotechnologie-Kempe GmbH (2006), Germany (1963)
Zielke, EA.: Numerical analysis of a one dimensional diffusion equation for a single chamber microbial fuel cell using a linked simulation optimization (LSO) technique. In: E521: Advanced Numerical Methods. (2006)
Torres, C.I., Marcus, A.K., Lee, H.-S., Parameswaran, P., Krajmalnik-Brown, R., Rittmann, B.E.: A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol. Rev. 34(1), 3–17 (2010). doi: 10.1111/j.1574-6976.2009.00191.x
Torres, C.I., Kato Marcus, A., Rittmann, B.E.: Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnol. Bioeng. 100(5), 872–881 (2008). doi: 10.1002/bit.21821
Rharbi, Y., Yekta, A., Winnik, M.A.: A method for measuring oxygen diffusion and oxygen permeation in polymer films based on fluorescence quenching. Anal. Chem. 71(22), 5045–5053 (1999). doi: 10.1021/ac990193c
Thauer, R.K., Jungermann, K., Decker, K.: Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41(1), 100–180 (1977)
van Niel, E.W.J., Claassen, P.A.M., Stams, A.J.M.: Substrate and product inhibition of hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus. Biotechnol. Bioeng. 81(3), 255–262 (2003). doi: 10.1002/bit.10463
Conte, S.D., de Boor, C.: The solution of linear system by elimination. In: Elementary Numerical Analysis: An Algorithmic Approach, pp. 147–157. McGraw-Hill, New York (1980)
Lee, H.-S., Torres, C.S.I., Rittmann, B.E.: Effects of substrate diffusion and anode potential on kinetic parameters for anode-respiring bacteria. Environ. Sci. Technol. 43(19), 7571–7577 (2009). doi: 10.1021/es9015519