Modeling of Ultrahigh Molecular Weight Polyethylene Single Fiber Failure Under Dynamic Multiaxial Transverse Loading

F. D. Thomas1,2, S. Sockalingam2,1, M. A. Sutton2, T. Weerasooriya3, S. L. Alexander4
1McNAIR Aerospace Center, University of South Carolina, Columbia, USA
2Department of Mechanical Engineering, University of South Carolina, Columbia, USA
3US Army Research Laboratory, Aberdeen Proving Ground, USA
4SURVICE Engineering Company, Belcamp, USA

Tóm tắt

This study investigates the failure of microscale Dyneema® SK76 ultrahigh molecular weight polyethylene single fiber subjected to dynamic multiaxial transverse loading by three impactor geometries of radii – 200 (blunt), 20 (sharp), and 2 (razor) µm. A 3D finite element model of the single fiber transverse impact experiments by Thomas et al. 2020 has been developed to investigate the deformation and failure mechanisms at 10 and 20 m/s impact velocities. The model predicts a transverse wave manifesting in the form of a dispersive flexural wave because of the non-negligible longitudinal shear modulus. This transverse wave reflects at the clamped boundary and travels back and forth between the impact location and the clamped end. The reflected transverse wave upon reaching the impact location induces a stepwise increase in both impactor-fiber contact force and maximum axial tensile strain. A failure criterion based on maximum axial tensile strain considering the gage length, strain rate effects, and multiaxial loading (transverse compression and transverse shear) induced degradation effects is applied to predict the fiber failure. The average tensile failure strains and strengths predicted by the model are found to agree well with the experimental results. All the impactors induce transverse compressive strain resulting in a 13.2% reduction in tensile failure strain. Transverse shear strain increases with decreasing impactor radius, with razor inducing a maximum reduction of 25%. Tensile strain concentration factors are predicted in the range of 1.5–1.6 for blunt and sharp, and 2.4–2.5 for the razor impactor.

Từ khóa


Tài liệu tham khảo

Krishnan K, Sockalingam S, Bansal S, Rajan SD (2010) Numerical simulation of ceramic composite armor subjected to ballistic impact. Compos Part B Eng 41:583–593. https://doi.org/10.1016/j.compositesb.2010.10.001

Sockalingam S, Gillespie JW, Keefe M (2015) Dynamic modeling of Kevlar KM2 single fiber subjected to transverse impact. Int J Solids Struct 67–68:297–310. https://doi.org/10.1016/j.ijsolstr.2015.04.031

Sockalingam S, Gillespie JW, Keefe M (2017) Modeling the fiber length-scale response of Kevlar KM2 yarn during transverse impact. Text Res J 87:2242–2254. https://doi.org/10.1177/0040517516669074

Sockalingam S, Gillespie J, Keefe M (2017) Role of inelastic transverse compressive behavior and multiaxial loading on the transverse impact of Kevlar KM2 single fiber. Fibers 5:9. https://doi.org/10.3390/fib5010009

Hudspeth M, Nie X, Chen W (2012) Dynamic failure of Dyneema SK76 single fibers under biaxial shear/tension. Polymer (Guildf) 53:5568–5574. https://doi.org/10.1016/j.polymer.2012.09.020

Hudspeth M, Li D, Spatola J, Chen W, Zheng J (2015) The effects of off-axis transverse deflection loading on the failure strain of various high-performance fibers. Text Res J 86:897–910. https://doi.org/10.1177/0040517515588262

Thomas FD, Casem D, Weerasooriya T, Sockalingam S, Gillespie JW (2019) Influence of high strain rate transverse compression on the tensile strength of polyethylene ballistic single fibers. Conf Proc Soc Exp Mech Ser 1:339–344. https://doi.org/10.1007/978-3-319-95089-1_62

Sockalingam S, Thomas FD, Casem D, Gillespie JW, Weerasooriya T (2019) Failure of Dyneema® SK76 single fiber under multiaxial transverse loading. Text Res J 89:2659–2673. https://doi.org/10.1177/0040517518798653

Thomas FD, Alexander SL, Weerasooriya T, Sockalingam S (2021) Experimental investigation of the influence of dynamic multiaxial transverse loading on ultrahigh molecular weight polyethylene single fiber failure. Compos Part A Appl Sci Manuf 142:106250. https://doi.org/10.1016/j.compositesa.2020.106250

Sockalingam S, Casem D, Weerasooriya T, Mcdaniel P, Gillespie J Jr (2017) Experimental investigation of the high strain rate transverse compression behavior of ballistic single fibers. J Dynamic Behavior Mater 3:474–484. https://doi.org/10.1007/s40870-017-0126-2

Golovin K, Phoenix SL (2016) Effects of extreme transverse deformation on the strength of UHMWPE single filaments for ballistic applications. J Mater Sci 51:8075–8086. https://doi.org/10.1007/s10853-016-0077-3

Shah K, Sockalingam S (2020) Experimental investigation of transverse loading behavior of ultra-high molecular weight polyethylene yarns. Fibers 8:1–18. https://doi.org/10.3390/fib8100066

Strawhecker KE, Sandoz-Rosado EJ, Stockdale TA, Laird ED (2016) Interior morphology of high-performance polyethylene fibers revealed by modulus mapping. Polymer (Guildf) 103:224–232. https://doi.org/10.1016/j.polymer.2016.09.062

Stockdale TA, Cole DP, Staniszewski JM, Roenbeck MR, Papkov D, Lustig SR et al (2020) Hierarchical mechanisms of lateral interactions in high-performance fibers. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.9b23459

Languerand DL, Zhang H, Murthy NS, Ramesh KT, Sansoz F (2009) Inelastic behavior and fracture of high modulus polymeric fiber bundles at high strain-rates. Mater Sci Eng A 500:216–224. https://doi.org/10.1016/j.msea.2008.09.075

Staniszewski JM, Bogetti TA, Wu V, Moy P (2020) Interfibrillar behavior in ultra-high molecular weight polyethylene (UHMWPE) single fibers subjected to tension. Int J Solids Struct 206:354–369. https://doi.org/10.1016/j.ijsolstr.2020.09.021

Kempesis D, Iannucci L, Del RS, Curtis PT, Pope D, Duke PW (2021) A representative volume element model for ultra-high-molecular-weight-polyethylene composites. Compos Struct 262:113609. https://doi.org/10.1016/j.compstruct.2021.113609

McDaniel PB, Sockalingam S, Deitzel JM, Gillespie JW, Keefe M, Bogetti TA et al (2017) The effect of fiber meso/nanostructure on the transverse compression response of ballistic fibers. Compos Part A Appl Sci Manuf 94:133–145. https://doi.org/10.1016/j.compositesa.2016.12.003

Sockalingam S, Gillespie JW, Keefe M (2016) Influence of multiaxial loading on the failure of Kevlar KM2 single fiber. Text Res J. https://doi.org/10.1177/0040517516681961

Sanborn B, Weerasooriya T (2015) Tensile properties of Dyneema SK76 single fibers at multiple loading rates using a direct gripping method. Conf Proc Soc Exp Mech Ser 65:10–13. https://doi.org/10.1007/978-3-319-06995-1

DSM. Fact sheet Dyneema® high-strength, high-modulus polyethylene fiber 2008:1–4.

Chowdhury S, Sockalingam S, Gillespie J (2017) Molecular dynamics modeling of the effect of axial and transverse compression on the residual tensile properties of ballistic fiber. Fibers 5:7. https://doi.org/10.3390/fib5010007

O’Connor TC, Robbins MO (2016) Chain ends and the ultimate strength of polyethylene fibers. ACS Macro Lett 5:263–267. https://doi.org/10.1021/acsmacrolett.5b00838

Ledbetter HM, Austin MW (1985) Effects of carbon and nitrogen on the elastic constants of AISI type 304 stainless steel. Mater Sci Eng 70:143–149. https://doi.org/10.1016/0025-5416(85)90275-7

Sockalingam S, Bremble R, Gillespie JW, Keefe M (2016) Transverse compression behavior of Kevlar KM2 single fiber. Compos Part A Appl Sci Manuf 81:271–281. https://doi.org/10.1016/j.compositesa.2015.11.032

Sanborn B, DiLeonardi AM, Weerasooriya T (2015) Tensile properties of Dyneema SK76 single fibers at multiple loading rates using a direct gripping method. J Dyn Behav Mater 1:4–14. https://doi.org/10.1007/s40870-014-0001-3

Cole JD, Dougherty CB, Huth JH (1953) Constant strain waves in strings. J Appl Mech 20:53–54. https://doi.org/10.1017/CBO9781107415324.004

Sockalingam S, Thomas FD, Casem D, Gillespie JW, Weerasooriya T (2018) Failure of Dyneema® SK76 single fiber under multiaxial transverse loading. Text Res J 89:2659–2673. https://doi.org/10.1177/0040517518798653