Modeling of Trough Plasma Bismuth Concentrations
Tóm tắt
Disposition pharmacokinetics of bismuth following oral dosing of ranitidine bismuth citrate are complicated and variable. An analysis of data from healthy volunteers suggests a model with three disposition compartments and first-order absorption. Patient data are pooled from 10 separate studies and consist of 1140 trough concentrations measured in 802 patients following dosing of 2 to 12 weeks duration. There are therefore insufficient data to obtain reliable parameter estimates for the full model and we use instead a much reduced model and an informative prior based on the volunteer data. Individual parameter estimates from this model can then be used to establish covariate relationships. Trough concentrations were influenced by the coadministration of clarithromycin and by creatinine clearance. A simulation study was carried out to check the validity of the estimates obtained from the reduced model. We carry out analysis via Bayesian sampling-based techniques. Throughout, we use predictive distributions for both diagnostic and inference purposes. In particular, we determine predicted distributions for the Cmax
, Cmin
and AUC characteristics of new individuals.
Tài liệu tham khảo
G. A. Pipkin, J. G. Mills, L. Kler, J. S. Dixon, and J. R. Wood. The safety of ranitidine bismuth citrate in control clinical trials. Pharmacoepidemiol. Drug Safety (in press).
H. P. Wijinand. Pharmacokinetic model equations for the one-and two-compartment models with first-order processes in which absorption and exponential elimination or distribution rate constants are equal. J. Pharmacokin. Biopharm. 16:109–128 (1988).
J. C. Wakefield. The Bayesian analysis of population pharmacokinetic models. J. Am. Statist. Assoc. 91:306–319 (1996).
J. C. Wakefield, A. F. M. Smith, A. Racine-Poon, and A. E. Gelfand. Bayesian Analysis of Linear and Non-linear Population Models using the Gibbs Sampler. Appl. Statist. 41:201–221 (1994).
J. E. Bennett and J. C. Wakefield. A comparison of a Bayesian population method with two methods as implemented in commercially-available software. J. Pharmacokin. Biopharm. 24:403–432 (1996).
L. Z. Benet. Safety and pharmacokinetics: Colloidal bismuth subcitrate. Scand. J. Gastroenterol. 26:185:29–35 (1991).
L. F. Lacey, S. Lettis, J. Douglas, and A. Duggan. Effect on trough plasma concentrations in duodenal ulcer patients following co-prescription of ranitidine bismuth citrate (GR 122311X) with clarithromycin or amoxycillin. Pharm. Res. 12(Suppl. 9):S394 (1995).
L. F. Lacey, N. M. Frazer, O. N. Keene, and J. T. L. Smith. Comparative pharmacokinetics of bismuth from ranitidine bismuth citrate (GR 122311X), a novel anti-ulcerant and tripotassium ditcitrato bismuthate TDB. Eur. J. Clin. Pharmacol. 47:177–180 (1994).
M. Rowland and T. N. Tozer. Clinical Pharmacokinetics: Concepts and Applications, 2nd ed., Lea and Febiger, Philadelphia, 1989.
J. C. Wakefield and J. E. Bennett. The Bayesian modelling of covariates for population pharmacokinetic models. J. Am. Statist. Assoc. 91:917–927 (1996).
K. D. Bardhan, C. P. M. Dekkers, A. Nowak, O. B. Shaffalitzky de Muckadell, K. Schutze, G. Tildesley, L. Kler, J. K. Forster, and L. F. Lacey. GR122311X (ranitidine bismuth citrate) A new drug for the treatment of duodenal ulcer. Gastroenterology 106 (4 Part 2):A46 (1994).
J. C. Douglas, N. Lotay, L. Kler, and L. F. Lacey. Trough plasma bismuth concentrations during long-term treatment with ranitidine bismuth citrate. Gut. 39(Suppl. 3): A49 (1996).
A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis, Chapman and Hall, London, 1995.
J. C. Wakefield. An expected loss approach to the design of dosage regimens via sampling-based methods. Statistician 43:13–29 (1994).
J. C. Wakefield. Bayesian individualization via sampling-based methods. J. Pharmacokin. Biopharm. 24:103–131 (1996).
A. F. M. Smith and G. O. Roberts. Bayesian computations via the Gibbs sampler and related Markov chain Monte Carlo methods. J. Roy. Statist. Soc. B 55:3–23 (1993).
W. R. Gilks, D. G. Clayton, D. J. Spiegelhalter, N. G. Best, A. J. McNeil, L. D. Sharples, and A. J. Kirby. Modelling complexity applications of Gibbs sampling in medicine. J. Roy. Statist. Soc. B 55:39–52 (1993).
L. Tierney. Markov chains for exploring posterior distributions. Ann. Statist. 22:1701–1762 (1994).
J. E. Bennett, A. Racine-Poon, and J. C. Wakefield. Markov chain Monte Carlo for nonlinear hierarchical models. In W. R. Gilks. S. Richardson, and D. J. Spiegelhalter (eds.). Markov Chain Monte Carlo in Practice, Chapman and Hall, London, 1995.
W. R. Gilks, N. G. Best, and K. K. C. Tan. Adaptive rejection Metropolis sampling within Gibbs sampling. Appl. Statist. 44:455–472 (1995).
N. G. Best, K. K. C. Tan, W. R. Gilks, and D. J. Spiegelhalter. Estimation of population pharmacokinetics using the Gibbs sampler. J. Pharmacokin. Biopharm. 23:407–424 (1995).
J. C. Wakefield and A. Racine-Poon. An application of Bayesian population pharmacokinetic/pharmacodynamic models to dose recommendation. Statist. Med. 14:971–986 (1995).
A. Racine-Poon and J. C. Wakefield. Bayesian analysis of population pharmacokinetic and instantaneous pharmacodynamic relationships. In D. Berry and D. Stangl, (eds.). Bayesian Biostatistics, Marcel Dekker, New York, 1995.