Modeling of Hysteresis in Single-Crystalline Barium Titanate with Allowance for Domain Structure Evolution
Tóm tắt
The paper proposes a microstructural model of tetragonal single-crystalline barium titanate for analyzing how the state of its domain structure can influence the simulation accuracy of dielectric hysteresis curves with regard for domain interactions and for stress and electric field inhomogeneities in the single crystal. Hysteresis curves based on finite element homogenization are presented for all eight types of second-rank laminate domain patterns satisfying the compatibility conditions. It is shown that the properties of domain structures are substantially anisotropic under loading in different directions and that the dielectric hysteresis for different domain patterns differs greatly. The proposed model allows one to describe the effects of domain hardening and unloading nonlinearity. The results of calculations using the model agree well with experimental data at different cyclic load amplitudes.
Tài liệu tham khảo
Lines, M.E. and Glass, A.M., Principles and Applications of Ferroelectrics and Related Materials, Oxford: Oxford University Press, 2001. https://doi.org/10.1093/acprof:oso/9780198507789.001.0001
Uchino, K., Ferroelectric Devices, New York: CRC Press, 2009. https://doi.org/10.1201/b15852
Golovnin, V.A., Kaplunov, I.A., Malyshkina, O.V., and Pedko, B.B., Piezoelectric Ceramics (Applications, Production, Perspectives), Vestnik TvGU, Fiz., 2010, no. 11, pp. 47–58.
Ishiwara, H., Arimoto, Y., and Okuyama, M., Ferroelectric Random Access Memories. Fundamentals and Applications, Berlin: Springer-Verlag, 2004.
Bell, A.J. and Deubzer, O., Lead-Free Piezoelectrics—The Environmental and Regulatory Issues, MRS Bull., 2018, vol. 43(8), pp. 581–587. https://doi.org/10.1557/mrs.2018.154
Wul, B.M. and Goldman, I.M., Dielectric Constants of Titanates of Metals of the Second Group, Dokl. Akad. Nauk SSSR, 1945, vol. 46, no. 4, pp. 154–157.
Wul, B.M. and Goldman, I.M., Dielectric Hysteresis in Barium Titanate, Dokl. Akad. Nauk SSSR, 1946, vol. 51, no. 1, pp. 21–24.
Landis, C.M., Fully Coupled, Multi-Axial, Symmetric Constitutive Laws for Polycrystalline Ferroelectric Ceramics, J. Mech. Phys. Solids, 2002, vol. 50, pp. 127–152. https://doi.org/10.1016/S0022-5096(01)00021-7
McMeeking, R.M. and Landis, C.M., A Phenomenological Multi-Axial Constitutive Law for Switching in Polycrystalline Ferroelectric Ceramics, Int. J. Eng. Sci., 2002, no. 14(40), pp. 1553–1577. https://doi.org/10.1016/S0020-7225(02)00033-2
Landis, C.M., On the Strain Saturation Conditions for Polycrystalline Ferroelastic Materials, J. Appl. Mech., 2003, no. 4(70), pp. 470–478. https://doi.org/10.1115/1.1600472
Kamlah, M., Ferroelectric and Ferroelastic Piezoceramics—Modeling of Electromechanical Hysteresis Phenomena, Continuum Mech. Thermodyn., 2001, no. 4(13), pp. 219–268. https://doi.org/10.1007/s001610100052
Bassiouny, E., Ghaleb, A.F., and Maugin, G.A., Thermodynamical Formulation for Coupled Electromechanical Hysteresis Effects—II. Poling of Ceramics, Int. J. Eng. Sci., 1988, no. 12(26), pp. 1297–1306. https://doi.org/10.1016/0020-7225(88)90048-1
Semenov, A.S. and Lobanov, S.M., The Simulation of Rate-Dependent Behavior of Ferroelectroelastic Materials under Cyclic Loading, Tech. Phys., 2018, vol. 63, pp. 1479–1485. https://doi.org/10.1134/S1063784218100201
Pechstein, A.S., Meindlhumer, M., and Humer, A., The Polarization Process of Ferroelectric Materials in the Framework of Variational Inequalities, Z. Angew. Math. Mech., 2020, vol. 100, p. e201900329. https://doi.org/10.1002/zamm.201900329
Huber, J.E., Fleck, N.A., Landis, C.M., and McMeeking, R.M., A Constitutive Model for Ferroelectric Polycrystals, J. Mech. Phys. Solids, 1999, vol. 47, pp. 1663–1697. https://doi.org/10.1016/S0022-5096(98)00122-7
Huber, J.E. and Fleck, N.A., Multi-Axial Electrical Switching of a Ferroelectric: Theory Versus Experiment, J. Mech. Phys. Solids, 2001, vol. 49, p. 785. https://doi.org/10.1016/S0022-5096(00)00052-1
Liskowsky, A.C., Semenov, A.S., Balke, H., and McMeeking, R.M., Finite Element Modeling of the Ferroelectroelastic Material Behavior in Consideration of Domain Wall Motions, in Coupled Nonlinear Phenomena—Modeling and Simulation for Smart, Ferroic and Multiferroic Materials: Proceedings of the 2005 MRS Spring Meeting, McMeeking, R.M., Kamlah, M., Seelecke, S., and Viehland, D., Eds., 2005, vol. 881E, p. CC4.2. https://doi.org/10.1088/1742-6596/1236/1/012062
Belov, A.Y. and Kreher, W.S., Viscoplastic Models for Ferroelectric Ceramics, J. Eur. Ceram. Soc., 2005, vol. 25, pp. 2567–2571.
Pathak, A. and McMeeking, R.M., Three-Dimensional Finite Element Simulations of Ferroelectric Polycrystals under Electrical and Mechanical Loading, J. Mech. Phys. Solids, 2008, vol. 56, pp. 663–683. https://doi.org/10.1016/j.jmps.2007.05.003
Belokon, A.V. and Skaliukh, A.S., On Constitutive Relations in Three-Dimensional Polarization Models, Vestn. Perm. Gos. Tekh. Univ., Mat. Model. Sist. Prots., 2008, no. 16, pp. 10–16.
Belokon, A.V. and Skaliukh, A.S., Mathematical Modeling of Irreversible Polarization Processes, Moscow: Fizmatlit, 2010.
Semenov, A.S., Balke, H., and Melnikov, B.E., Modeling of Polycrystalline Piezoelectric Ceramic by Finite Element Homogenization, Mor. Intell. Technol., 2011, no. S3, pp. 106–112.
Neumeister, P. and Balke, H., Micromechanical Modeling of the Remanent Properties of Morphotropic PZT, J. Mech. Phys. Solids, 2011, vol. 59, pp. 1794–1807. https://doi.org/10.1016/j.jmps.2011.05.014
Semenov, A.S., Micromechanical Model of a Polycrystalline Ferroelectroelastic Material with Consideration of Defects, J. Appl. Mech. Tech. Phys., 2019, vol. 60, pp. 1125–1140. https://doi.org/10.1134/S002189441906018X
Semenov, A.S., Modeling of the Behavior of Ferro-Piezoceramics under Complex Non-Proportional Loading Based on a Microstructural Model, in Elasticity and Inelasticity: Proc. Int. Sci. Symp. on the Problems of the Mechanics of Deformable Bodies, Dedicated to the 110th Anniversary of A.A. Ilyushin, Moscow, January 20–21, 2021, Brovko, G.L., Georgievsky, D.V., and Molodtsov, I.N., Eds., Moscow: Moscow State Univ., 2021, pp. 512–519.
Semenov, A.S., Microstructural Model of a Ferroelectroelastic Material with Taking into Account the Defects’ Evolution, St. Petersburg Polytech. Univ. J. Phys. Math., 2021, vol. 14, no. 1, pp. 32–57. https://doi.org/10.18721/JPM.14103
Voigt, W., Lehrbuch der Kristallphysik, Stuttgart: Springer, 1966. https://doi.org/10.1007/978-3-663-15884-4
Smolensky, G.A. and Krainik, N.N., Ferroelectrics and Antiferroelectrics, Moscow: Nauka, 1968.
Jaffe, B., Cook, W.R., and Jaffe, H., Piezoelectric Ceramics, New York: Academic Press, 1971.
Vakulenko, A.A., Relation between Stresses and Strains in Non-Elastic Media, Sov. Phys. Dokl., 1958, vol. 3, no.1, pp. 193–196.
Maugin, G.A., The Saga of Internal Variables of State in Continuum Thermo-Mechanics (1893–2013), Mech. Res. Commun., 2015, vol. 69, pp. 79–86. https://doi.org/10.1016/j.mechrescom.2015.06.009
McDowell, D.L., Internal State Variable Theory, in Handbook of Materials Modeling, Yip, S., Ed., Berlin: Springer, 2005, pp. 1151–1169. https://doi.org/10.1007/978-1-4020-3286-8_58
Semenov, A.S., PANTOCRATOR—The Finite Element Programm Specialized on the Nonlinear Problem Solution, in Scientific and Technical Problems of Forecasting the Reliability and Durability of Structures and Methods for Their Solution, Proc. 5th Int. Conf., St. Petersburg, October 14–17, 2003, St. Petersburg: St Petersburg State Polytech. Univ., 2003, pp. 466–480.
Landis, C.M., A New Finite-Element Formulation for Electromechanical Boundary Value Problems, Int. J. Numer. Meth. Eng., 2002, vol. 55, pp. 613–628. https://doi.org/10.1117/12.475012
Semenov, A.S., Kessler, H., Liskowsky, A., and Balke, H., On a Vector Potential Formulation for 3D Electromechanical FE Analysis, Com. Num. Meth. Eng., 2006, vol. 22, pp. 357–375. https://doi.org/10.1002/cnm.818
Tsou, N.T., Potnis, P.R., and Huber, J.E., Classification of Laminate Domain Patterns in Ferroelectrics, Phys. Rev. B. Condens. Matter Mater. Phys., 2011, vol. 83, p. 184120. https://doi.org/10.1103/PhysRevB.83.184120
Wongdamnern, N., Ngamjarurojana, A., Laosiritaworn, Y., Ananta, S., and Yimnirun, R., Dynamic Ferroelectric Hysteresis Scaling of BaTiO3 Single Crystals, J. Appl. Phys., 2009, vol. 105, p. 044109. https://doi.org/10.1063/1.3086317
Cho, Y., Kazuta, S., Matsuura, K., and Odagawa, H., Scanning Nonlinear Dielectric Microscopy with Nanometer Resolution, J. Eur. Ceram. Soc., 2000, vol. 1, pp. 279–282. https://doi.org/10.1109/ISAF.2000.941555