Modeling of Field Effect Transistor Channel as a Nonlinear Transmission Line for Terahertz Detection
Tóm tắt
This paper revisits the theory of operation of field effect transistor in the extremely high frequency scale, where the analysis has gone beyond the conventional cutoff frequency of the transistor. In this range, which is typically the terahertz (THz) and sub-terahertz range, the transistor blocks the high frequency signal and generates a rectified signal related to the input high frequency signal. An analytical model is derived for the channel of the FET in the linear mode of operation in non-resonant THz detection conditions. A transmission line distributed circuit model is applied. This is, from the authors’ point of view, the suitable model for high frequency non-quasi static operation and the characteristic parameters of this model are derived from the differential equation governing the electron gas in the channel. A comparison is presented for the calculated photoresponse with previously published experimental one showing good agreement away from the threshold potential. Finally, the effects of coupling between the present model and the external input circuit have been taken into account including the loading effects of the antenna and a discussion is given for the effect on frequency selectivity of the FET.
Tài liệu tham khảo
Lu, J.-Q., Shur, M.S., Hesler, J.L., Sun, L., Weikle, R.: Terahertz detector utilizing two-dimensional electronic fluid. IEEE Electron Device Letters. 19, 373–375 (1998).
Knap, W., Dyakonov, M., Coquillat, D., Teppe, F., Dyakonova, N., Łusakowski, J., Karpierz, K., Sakowicz, M., Valusis, G., Seliuta, D., Kasalynas, I., Fatimy, A.E., Meziani, Y.M., Otsuji, T.: Field Effect Transistors for Terahertz Detection: Physics and First Imaging Applications. J Infrared Milli Terahz Waves. 30, 1319–1337 (2009).
Dyer, G.C., Vinh, N.Q., Allen, S.J., Aizin, G.R., Mikalopas, J., Reno, J.L., Shaner, E.A.: A terahertz plasmon cavity detector. Applied Physics Letters. 97, 193507–193507–3 (2010).
El Fatimy, A., Teppe, F., Dyakonova, N., Knap, W., Seliuta, D., Valušis, G., Shchepetov, A., Roelens, Y., Bollaert, S., Cappy, A., Rumyantsev, S.: Resonant and voltage-tunable terahertz detection in InGaAs/InP nanometer transistors. Applied Physics Letters. 89, 131926–131926–3 (2006).
Teppe, F., Knap, W., Veksler, D., Shur, M.S., Dmitriev, A.P., Kachorovskii, V.Y., Rumyantsev, S.: Room-temperature plasma waves resonant detection of sub-terahertz radiation by nanometer field-effect transistor. Applied Physics Letters. 87, 052107–052107–3 (2005).
Knap, W., Kachorovskii, V., Deng, Y., Rumyantsev, S., Lü, J.-Q., Gaska, R., Shur, M.S., Simin, G., Hu, X., Khan, M.A., Saylor, C.A., Brunel, L.C.: Nonresonant detection of terahertz radiation in field effect transistors. Journal of Applied Physics. 91, 9346–9353 (2002).
Fatimy, A.E., Tombet, S.B., Teppe, F., Knap, W., Veksler, D.B., Rumyantsev, S., Shur, M.S., Pala, N., Gaska, R., Fareed, Q., Hu, X., Seliuta, D., Valusis, G., Gaquiere, C., Theron, D., Cappy, A.: Terahertz detection by GaN/AlGaN transistors. Electronics Letters. 42, 1342–1343 (2006).
Lü, J.-Q., Shur, M.S.: Terahertz detection by high-electron-mobility transistor: Enhancement by drain bias. Applied Physics Letters. 78, 2587–2588 (2001).
Tauk, R., Teppe, F., Boubanga, S., Coquillat, D., Knap, W., Meziani, Y.M., Gallon, C., Boeuf, F., Skotnicki, T., Fenouillet-Beranger, C., Maude, D.K., Rumyantsev, S., Shur, M.S.: Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power. Applied Physics Letters. 89, 253511–253511–3 (2006).
Lisauskas, A., Von Spiegel, W., Boubanga-Tombet, S., El Fatimy, A., Coquillat, D., Teppe, F., Dyakonova, N., Knap, W., Roskos, H.G.: Terahertz imaging with GaAS field-effect transistors. Electronics Letters. 44, 408–409 (2008).
Lisauskas, A., Pfeiffer, U., Öjefors, E., Bolìvar, P.H., Glaab, D., Roskos, H.G.: Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors. Journal of Applied Physics. 105, 114511–114511–7 (2009).
Ojefors, E., Baktash, N., Zhao, Y., Hadi, R.A., Sherry, H., Pfeiffer, U.R.: Terahertz imaging detectors in a 65-nm CMOS SOI technology. ESSCIRC, 2010 Proceedings of the. pp. 486–489 (2010).
Ojefors, E., Pfeiffer, U.R., Lisauskas, A., Roskos, H.G.: A 0.65 THz Focal-Plane Array in a Quarter-Micron CMOS Process Technology. IEEE Journal of Solid-State Circuits. 44, 1968–1976 (2009).
Lee, Shur, M.: Semiconductor Device Modeling for VLSI. Prentice Hall PTR (1993).
Preu, S., Kim, S., Verma, R., Burke, P.G., Sherwin, M.S., Gossard, A.C.: An improved model for non-resonant terahertz detection in field-effect transistors. Journal of Applied Physics. 111, 024502–024502–9 (2012).
Veksler, D., Teppe, F., Dmitriev, A.P., Kachorovskii, V.Y., Knap, W., Shur, M.S.: Detection of terahertz radiation in gated two-dimensional structures governed by dc current. Phys. Rev. B. 73, 125328 (2006).
Knap, W., Nadar, S., Videlier, H., Boubanga-Tombet, S., Coquillat, D., Dyakonova, N., Teppe, F., Karpierz, K., Łusakowski, J., Sakowicz, M., Kasalynas, I., Seliuta, D., Valusis, G., Otsuji, T., Meziani, Y., Fatimy, A.E., Vandenbrouk, S., Madjour, K., Théron, D., Gaquière, C.: Field Effect Transistors for Terahertz Detection and Emission. J Infrared Milli Terahz Waves. 32, 618–628 (2011).
Nadar, S., Videlier, H., Coquillat, D., Teppe, F., Sakowicz, M., Dyakonova, N., Knap, W., Seliuta, D., Kašalynas, I., Valušis, G.: Room temperature imaging at 1.63 and 2.54 THz with field effect transistor detectors. Journal of Applied Physics. 108, 054508–054508–5 (2010).