Modeling mechanical behaviors of plant stems undergoing microstructural changes

Mechanics of Materials - Tập 139 - Trang 103175 - 2019
Ruyue Song1, Anastasia Muliana1
1Department of Mechanical Engineering, Texas A&M University, United States

Tài liệu tham khảo

Altaner, C. and M. Jarvis (2008). Modelling polymer interactions of the ‘molecular Velcro'type in wood under mechanical stress.253(3): 434–445. Borodulina, 2015, Constitutive modeling of a paper fiber in cyclic loading applications, Comput. Mater. Sci., 110, 227, 10.1016/j.commatsci.2015.08.039 Brulé, 2016, Hierarchies of plant stiffness, Plant Sci., 250, 79, 10.1016/j.plantsci.2016.06.002 Burgert, 2006, Exploring the micromechanical design of plant cell walls, Am. J. Bot., 93, 1391, 10.3732/ajb.93.10.1391 De Tommasi, 2006, A micromechanics-based model for the Mullins effect, J. Rheol., 50, 495, 10.1122/1.2206706 De Tommasi, 2010, Damage, self-healing, and hysteresis in spider silks, Biophys. J., 98, 1941, 10.1016/j.bpj.2010.01.021 Doraiswamy, 2011, Combining thermodynamic principles with Preisach models for superelastic shape memory alloy wires, Smart Mater. Struct., 20, 10.1088/0964-1726/20/8/085032 Fratzl, 2004, Structure and mechanical quality of the collagen–mineral nano-composite in bone, J. Mater. Chem., 14, 2115, 10.1039/B402005G Gibson, 2012, The hierarchical structure and mechanics of plant materials, J. R. Soc. Interface, 10.1098/rsif.2012.0341 Gomez, 2017, Identifying morphological and mechanical traits associated with stem lodging in bioenergy sorghum (Sorghum bicolor), BioEnergy Res., 10, 635, 10.1007/s12155-017-9826-7 Gomez, 2018, Predicting stem strength in diverse bioenergy sorghum genotypes, Crop Sci., 58, 739, 10.2135/cropsci2017.09.0588 Hayot, 2012, Viscoelastic properties of cell walls of single living plant cells determined by dynamic nanoindentation, J. Exp. Bot., 63, 2525, 10.1093/jxb/err428 Hogan, 2004, Temperature and water content effects on the viscoelastic behavior of Tilia americana (Tiliaceae) sapwood, Trees, 18, 339, 10.1007/s00468-003-0311-x Köhler, 2002, Micromechanics of plant tissues beyond the linear-elastic range, Planta, 215, 33, 10.1007/s00425-001-0718-9 Kerstens, 2001, Cell walls at the plant surface behave mechanically like fiber reinforced composite materials, Plant Physiol., 127, 381, 10.1104/pp.010423 Lee S, Zargar O, Gomez F, Pharr M, Muliana A, Finlayson SA (2019), “Time-dependent mechanical behavior of sorghum bicolor stems” under review. Lichtenegger, 1999, Variation of cellulose microfibril angles in softwoods and hardwoods—a possible strategy of mechanical optimization, J. Struct. Biol., 128, 257, 10.1006/jsbi.1999.4194 Lindström, 1998, Influence of cambial age and growth conditions on microfibril angle in young Norway spruce (Picea abies [L.] karst.)., Holzforschung-Int. J. Biol. Chem. Phys. Technol. Wood, 52, 573 Mayergoyz, 1986, Mathematical models of hysteresis, IEEE Trans. Magn., 22, 603, 10.1109/TMAG.1986.1064347 Mayergoyz, 2003 Muliana, 2016, A nonlinear viscoelastic constitutive model for polymeric solids based on multiple natural configuration theory, Int. J. Solids Struct., 100, 95, 10.1016/j.ijsolstr.2016.07.017 Navi, 1995, Micromechanics of wood subjected to axial tension, Wood Sci. Technol., 29, 411, 10.1007/BF00194199 Navi, 2004, Modeling the influences of microfibril angles and natural defects on the force-extension behavior of single wood fibers, 57 Niklas, 1992 Park, 2012, Changes in cell wall biomechanical properties in the xyloglucan-deficient xxt1/xxt2 mutant of Arabidopsis, Plant Physiol., 158, 465, 10.1104/pp.111.189779 Pieczywek, 2014, Finite element modelling of the mechanical behaviour of onion epidermis with incorporation of nonlinear properties of cell walls and real tissue geometry, J. Food Eng., 123, 50, 10.1016/j.jfoodeng.2013.09.012 Rajagopal, 2004, On the thermomechanics of materials that have multiple natural configurations. Part II: twinning and solid to solid phase transformation, Zeitschrift für angewandte Mathematik und Physik, 55, 1074, 10.1007/s00033-004-4020-0 Rajagopal, 1992, A constitutive equation for nonlinear solids which undergo deformation induced microstructural changes, Int. J. Plast., 8, 385, 10.1016/0749-6419(92)90056-I Robertson, 2017, Maize stalk lodging: morphological determinants of stalk strength, Crop Sci., 57, 926, 10.2135/cropsci2016.07.0569 Robertson, 2016, Maize stalk lodging: flexural stiffness predicts strength, Crop Sci., 56, 1711, 10.2135/cropsci2015.11.0665 Salmen, 1984, Viscoelastic properties ofin situ lignin under water-saturated conditions, J. Mater. Sci., 19, 3090, 10.1007/BF01026988 Shah, 2017, The strength of plants: theory and experimental methods to measure the mechanical properties of stems, J. Exp. Bot., 68, 4497, 10.1093/jxb/erx245 Singh, 2013, A new strain energy function to characterize apple and potato tissues, J. Food Eng., 118, 178, 10.1016/j.jfoodeng.2013.04.006 Song, 2018, Hysteretic electro-mechanical coupling response of PZT fibers: constitutive modeling and experiments, Ferroelectrics, 526, 95, 10.1080/00150193.2018.1456279 Song, 2019, A thermodynamically consistent model for viscoelastic polymers undergoing microstructural changes, Int. J. Eng. Sci., 142, 106, 10.1016/j.ijengsci.2019.05.009 Spatz, 1999, Mechanical behaviour of plant tissues: composite materials or structures?, J. Exp. Biol., 202, 3269, 10.1242/jeb.202.23.3269 Speck, 2003, Mechanical properties of the rhizome of Arundo donax l, Plant Biol., 5, 661, 10.1055/s-2003-44714 Speck, 2011, Plant stems: functional design and mechanics, Annu. Rev. Mater. Res., 41, 169, 10.1146/annurev-matsci-062910-100425 Trivaudey, 2015, Nonlinear tensile behaviour of elementary hemp fibres. part II: modelling using an anisotropic viscoelastic constitutive law in a material rotating frame., Compos. Part A, 68, 346, 10.1016/j.compositesa.2014.10.020 Xing, 2017, A nonlinear constitutive model for describing cyclic mechanical responses of BaTiO3/Ag composites, Acta Mech., 228, 10.1007/s00707-017-1801-z Yuan, 2017, Quasi-linear viscoelastic modeling of light-activated shape memory polymers, J. Intell. Mater. Syst. Struct., 28, 2500, 10.1177/1045389X17689936 Zhu, 2003, A mechanics model for the compression of plant and vegetative tissues, J. Theor. Biol., 221, 89, 10.1006/jtbi.2003.3173