Modeling mechanical behaviors of plant stems undergoing microstructural changes
Tài liệu tham khảo
Altaner, C. and M. Jarvis (2008). Modelling polymer interactions of the ‘molecular Velcro'type in wood under mechanical stress.253(3): 434–445.
Borodulina, 2015, Constitutive modeling of a paper fiber in cyclic loading applications, Comput. Mater. Sci., 110, 227, 10.1016/j.commatsci.2015.08.039
Brulé, 2016, Hierarchies of plant stiffness, Plant Sci., 250, 79, 10.1016/j.plantsci.2016.06.002
Burgert, 2006, Exploring the micromechanical design of plant cell walls, Am. J. Bot., 93, 1391, 10.3732/ajb.93.10.1391
De Tommasi, 2006, A micromechanics-based model for the Mullins effect, J. Rheol., 50, 495, 10.1122/1.2206706
De Tommasi, 2010, Damage, self-healing, and hysteresis in spider silks, Biophys. J., 98, 1941, 10.1016/j.bpj.2010.01.021
Doraiswamy, 2011, Combining thermodynamic principles with Preisach models for superelastic shape memory alloy wires, Smart Mater. Struct., 20, 10.1088/0964-1726/20/8/085032
Fratzl, 2004, Structure and mechanical quality of the collagen–mineral nano-composite in bone, J. Mater. Chem., 14, 2115, 10.1039/B402005G
Gibson, 2012, The hierarchical structure and mechanics of plant materials, J. R. Soc. Interface, 10.1098/rsif.2012.0341
Gomez, 2017, Identifying morphological and mechanical traits associated with stem lodging in bioenergy sorghum (Sorghum bicolor), BioEnergy Res., 10, 635, 10.1007/s12155-017-9826-7
Gomez, 2018, Predicting stem strength in diverse bioenergy sorghum genotypes, Crop Sci., 58, 739, 10.2135/cropsci2017.09.0588
Hayot, 2012, Viscoelastic properties of cell walls of single living plant cells determined by dynamic nanoindentation, J. Exp. Bot., 63, 2525, 10.1093/jxb/err428
Hogan, 2004, Temperature and water content effects on the viscoelastic behavior of Tilia americana (Tiliaceae) sapwood, Trees, 18, 339, 10.1007/s00468-003-0311-x
Köhler, 2002, Micromechanics of plant tissues beyond the linear-elastic range, Planta, 215, 33, 10.1007/s00425-001-0718-9
Kerstens, 2001, Cell walls at the plant surface behave mechanically like fiber reinforced composite materials, Plant Physiol., 127, 381, 10.1104/pp.010423
Lee S, Zargar O, Gomez F, Pharr M, Muliana A, Finlayson SA (2019), “Time-dependent mechanical behavior of sorghum bicolor stems” under review.
Lichtenegger, 1999, Variation of cellulose microfibril angles in softwoods and hardwoods—a possible strategy of mechanical optimization, J. Struct. Biol., 128, 257, 10.1006/jsbi.1999.4194
Lindström, 1998, Influence of cambial age and growth conditions on microfibril angle in young Norway spruce (Picea abies [L.] karst.)., Holzforschung-Int. J. Biol. Chem. Phys. Technol. Wood, 52, 573
Mayergoyz, 1986, Mathematical models of hysteresis, IEEE Trans. Magn., 22, 603, 10.1109/TMAG.1986.1064347
Mayergoyz, 2003
Muliana, 2016, A nonlinear viscoelastic constitutive model for polymeric solids based on multiple natural configuration theory, Int. J. Solids Struct., 100, 95, 10.1016/j.ijsolstr.2016.07.017
Navi, 1995, Micromechanics of wood subjected to axial tension, Wood Sci. Technol., 29, 411, 10.1007/BF00194199
Navi, 2004, Modeling the influences of microfibril angles and natural defects on the force-extension behavior of single wood fibers, 57
Niklas, 1992
Park, 2012, Changes in cell wall biomechanical properties in the xyloglucan-deficient xxt1/xxt2 mutant of Arabidopsis, Plant Physiol., 158, 465, 10.1104/pp.111.189779
Pieczywek, 2014, Finite element modelling of the mechanical behaviour of onion epidermis with incorporation of nonlinear properties of cell walls and real tissue geometry, J. Food Eng., 123, 50, 10.1016/j.jfoodeng.2013.09.012
Rajagopal, 2004, On the thermomechanics of materials that have multiple natural configurations. Part II: twinning and solid to solid phase transformation, Zeitschrift für angewandte Mathematik und Physik, 55, 1074, 10.1007/s00033-004-4020-0
Rajagopal, 1992, A constitutive equation for nonlinear solids which undergo deformation induced microstructural changes, Int. J. Plast., 8, 385, 10.1016/0749-6419(92)90056-I
Robertson, 2017, Maize stalk lodging: morphological determinants of stalk strength, Crop Sci., 57, 926, 10.2135/cropsci2016.07.0569
Robertson, 2016, Maize stalk lodging: flexural stiffness predicts strength, Crop Sci., 56, 1711, 10.2135/cropsci2015.11.0665
Salmen, 1984, Viscoelastic properties ofin situ lignin under water-saturated conditions, J. Mater. Sci., 19, 3090, 10.1007/BF01026988
Shah, 2017, The strength of plants: theory and experimental methods to measure the mechanical properties of stems, J. Exp. Bot., 68, 4497, 10.1093/jxb/erx245
Singh, 2013, A new strain energy function to characterize apple and potato tissues, J. Food Eng., 118, 178, 10.1016/j.jfoodeng.2013.04.006
Song, 2018, Hysteretic electro-mechanical coupling response of PZT fibers: constitutive modeling and experiments, Ferroelectrics, 526, 95, 10.1080/00150193.2018.1456279
Song, 2019, A thermodynamically consistent model for viscoelastic polymers undergoing microstructural changes, Int. J. Eng. Sci., 142, 106, 10.1016/j.ijengsci.2019.05.009
Spatz, 1999, Mechanical behaviour of plant tissues: composite materials or structures?, J. Exp. Biol., 202, 3269, 10.1242/jeb.202.23.3269
Speck, 2003, Mechanical properties of the rhizome of Arundo donax l, Plant Biol., 5, 661, 10.1055/s-2003-44714
Speck, 2011, Plant stems: functional design and mechanics, Annu. Rev. Mater. Res., 41, 169, 10.1146/annurev-matsci-062910-100425
Trivaudey, 2015, Nonlinear tensile behaviour of elementary hemp fibres. part II: modelling using an anisotropic viscoelastic constitutive law in a material rotating frame., Compos. Part A, 68, 346, 10.1016/j.compositesa.2014.10.020
Xing, 2017, A nonlinear constitutive model for describing cyclic mechanical responses of BaTiO3/Ag composites, Acta Mech., 228, 10.1007/s00707-017-1801-z
Yuan, 2017, Quasi-linear viscoelastic modeling of light-activated shape memory polymers, J. Intell. Mater. Syst. Struct., 28, 2500, 10.1177/1045389X17689936
Zhu, 2003, A mechanics model for the compression of plant and vegetative tissues, J. Theor. Biol., 221, 89, 10.1006/jtbi.2003.3173