Modeling ischemia with finite elements and automated machine learning

Journal of Computational Science - Tập 29 - Trang 99-106 - 2018
Marko Robnik-Šikonja1, Miloš Radović2, Smiljana Đorović2, Bojana Anđelković-Ćirković2, Nenad Filipović2
1University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113, 1000 Ljubljana, Slovenia
2University of Kragujevac, Faculty of Engineering, Sestre Janjić 6, 34000 Kragujevac, Serbia

Tài liệu tham khảo

Thygesen, 2012, Third universal definition of myocardial infarction, Circulation, 26, 2020, 10.1161/CIR.0b013e31826e1058 Cluitmans, 2015, Noninvasive reconstruction of cardiac electrical activity: update on current methods, applications and challenges, Neth. Heart J, 23, 301, 10.1007/s12471-015-0690-9 Gulrajani, 1998 Potse, 2006, A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart, IEEE Trans. Biomed. Eng., 53, 2425, 10.1109/TBME.2006.880875 Hopenfeld, 2004, Mechanism for ST depression associated with contiguous subendocardial ischemia, J. Cardiovasc. Electrophysiol., 15, 1200, 10.1046/j.1540-8167.2004.04072.x Nielsen, 2013, Computing ischemic regions in the heart with the bidomain model; First steps towards validation, IEEE Trans. Med. Imag., 32, 1085, 10.1109/TMI.2013.2254123 Ruud, 2009, A computationally efficient method for determining the size and location of myocardial ischemia, IEEE Trans. Biomed. Eng., 56, 263, 10.1109/TBME.2008.2009068 Jiang, 2010, Solving the inverse problem of electrocardiography in a realistic environment, Karlsruhe Trans. Bomed. Eng., 9 Wang, 2013, Inverse electrocardiographic source localization of ischemia: an optimization framework and finite element solution, J. Comput. Phys., 1, 403, 10.1016/j.jcp.2013.05.027 Exarchos, 2006, An association rule mining-based methodology for automated detection of ischemic ECG beats, IEEE Trans. Biomed. Eng., 53, 1531, 10.1109/TBME.2006.873753 Exarchos, 2007, A methodology for the automated creation of fuzzy expert systems for ischaemic and arrhythmic beat classification based on a set of rules obtained by a decision tree, Artif. Intell. Med., 40, 187, 10.1016/j.artmed.2007.04.001 de Gaetano, 2009, A patient adaptable ECG beat classifier based on neural networks, Appl. Math. Comput., 213, 243, 10.1016/j.amc.2009.03.013 Ansari, 2017, A review of automated methods for detection of myocardial ischemia and infarction using electrocardiogram and electronic health records, IEEE Rev. Biomed. Eng., 10, 264, 10.1109/RBME.2017.2757953 Hanna, 2011, ST-segment depression and T-wave inversion: classification, differential diagnosis, and caveats, Cleve. Clin. J. Med., 78, 404, 10.3949/ccjm.78a.10077 Correa, 2014, Novel technique for ST-T interval characterization in patients with acute myocardial ischemia, Comput. Biol. Med., 50, 49, 10.1016/j.compbiomed.2014.04.009 Ramanathan, 2001, Electrocardiographic imaging: II. Effect of torso inhomogeneities on noninvasive reconstruction of epicardial potentials, electrograms, and isochrones, J. Cardiovasc. Electrophysiol., 12, 241, 10.1046/j.1540-8167.2001.00241.x van Oosterom, 2014, A comparison of electrocardiographic imaging based on two source types, Europace, 16, iv120, 10.1093/europace/euu268 Keller, 2010, Ranking the influence of tissue conductivities on forward-calculated ECGs, IEEE Trans. Biomed. Eng., 57, 1568, 10.1109/TBME.2010.2046485 Cerqueira, 2002, Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart, Circulation, 105, 539, 10.1161/hc0402.102975 Tung, 1978 Jiang, 2009, Optimization of the electrode positions of multichannel ECG for the reconstruction of ischemic areas by solving the inverse electrocardiographic problem, Int. J. Bioelectromagn., 11, 27 Wolpert, 1997, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1, 67, 10.1109/4235.585893 Thornton, 2013, Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms, 847 Kuhn, 2008, Caret package, J. Stat. Softw., 28, 1 Frank, 2016 Friedman, 2001 Kononenko, 2007 Murphy, 2012 Witten, 2016 Chen, 2016 Caruana, 2008, An empirical evaluation of supervised learning in high dimensions, Proceedings of the 25th International Conference on Machine Learning, 96 Caruana, 2006, An empirical comparison of supervised learning algorithms, Proceedings of the 23rd International Conference on Machine Learning, ICML '06, 161, 10.1145/1143844.1143865 Verikas, 2011, Mining data with random forests: a survey and results of new tests, Pattern Recognit., 44, 330, 10.1016/j.patcog.2010.08.011