Modeling hydrodynamic interactions in soft materials with multiparticle collision dynamics

Current Opinion in Chemical Engineering - Tập 23 - Trang 34-43 - 2019
Michael P Howard1, Arash Nikoubashman2, Jeremy C Palmer3
1McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, United States
2Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
3Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States

Tài liệu tham khảo

Chen, 1998, Lattice Boltzmann method for fluid flows, Annu Rev Fluid Mech, 30, 329, 10.1146/annurev.fluid.30.1.329 van den Akker, 2018, Lattice Boltzmann simulations for multi-scale chemical engineering, Curr Opin Chem Eng, 21, 67, 10.1016/j.coche.2018.03.003 Allen, 2017 Brady, 1988, Stokesian dynamics, Annu Rev Fluid Mech, 20, 111, 10.1146/annurev.fl.20.010188.000551 Hoogerbrugge, 1992, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, Europhys Lett, 19, 155, 10.1209/0295-5075/19/3/001 Español, 2017, Perspective: dissipative particle dynamics, J Chem Phys, 146, 150901, 10.1063/1.4979514 Malevanets, 1999, Mesoscopic model for solvent dynamics, J Chem Phys, 110, 8605, 10.1063/1.478857 Lees, 1972, The computer study of transport processes under extreme conditions, J Phys C: Solid State Phys, 5, 1921, 10.1088/0022-3719/5/15/006 Müller-Plathe, 1999, Reversing the perturbation in nonequilibrium molecular dynamics: an easy way to calculate the shear viscosity of fluids, Phys Rev E, 59, 4894, 10.1103/PhysRevE.59.4894 Allahyarov, 2002, Mesoscopic solvent simulations: Multiparticle-collision dynamics of three-dimensional flows, Phys Rev E, 66, 036702, 10.1103/PhysRevE.66.036702 Ihle, 2006, Consistent particle-based algorithm with a non-ideal equation of state, Europhys Lett, 73, 664, 10.1209/epl/i2005-10460-0 Noguchi, 2007, Particle-based mesoscale hydrodynamic techniques, Europhys Lett, 78, 10005, 10.1209/0295-5075/78/10005 Mühlbauer, 2017, Isotropic stochastic rotation dynamics, Phys Rev Fluids, 2, 124204, 10.1103/PhysRevFluids.2.124204 Huang, 2012, Hydrodynamic correlations in multiparticle collision dynamics fluids, Phys Rev E, 86, 056711, 10.1103/PhysRevE.86.056711 Ihle, 2001, Stochastic rotation dynamics: a Galilean-invariant mesoscopic model for fluid flow, Phys Rev E, 63, 10.1103/PhysRevE.63.020201 Götze, 2007, Relevance of angular momentum conservation in mesoscale hydrodynamics simulations, Phys Rev E, 76, 046705, 10.1103/PhysRevE.76.046705 Huang, 2015, Thermostat for nonequilibrium multiparticle-collision-dynamics simulations, Phys Rev E, 91, 013310, 10.1103/PhysRevE.91.013310 Kapral, 2008, Multiparticle collision dynamics: simulation of complex systems on mesoscales, vol 140, 89 Gompper, 2009, Multi-particle collision dynamics: a particle-based mesoscale simulation approach to the hydrodynamics of complex fluids, 1 Ihle, 2003, Stochastic rotation dynamics. II. Transport coefficients, numerics, and long-time tails, Phys Rev E, 67, 066706, 10.1103/PhysRevE.67.066706 Padding, 2006, Hydrodynamic interactions and Brownian forces in colloidal suspensions: coarse-graining over time and length scales, Phys Rev E, 74, 031402, 10.1103/PhysRevE.74.031402 Ripoll, 2005, Dynamic regimes of fluids simulated by multiparticle-collision dynamics, Phys Rev E, 72, 016701, 10.1103/PhysRevE.72.016701 Lemmon, 2010, Thermophysical properties of fluid systems Wang, 1965, Self-diffusion coefficients of water, J Phys Chem, 69, 4412, 10.1021/j100782a510 Bolintineanu, 2014, Particle dynamics modeling methods for colloid suspensions, Comp Part Mech, 1, 321, 10.1007/s40571-014-0007-6 Malevanets, 2000, Dynamics of short polymer chains in solution, Europhys Lett, 52, 231, 10.1209/epl/i2000-00428-0 Malevanets, 2000, Solute molecular dynamics in a mesoscale solvent, J Chem Phys, 112, 7260, 10.1063/1.481289 Inoue, 2002, Development of a simulation model for solid objects suspended in a fluctuating fluid, J Stat Phys, 107, 85, 10.1023/A:1014550318814 Padding, 2005, Stick boundary conditions and rotational velocity auto-correlation functions for colloidal particles in a coarse-grained representation of the solvent, J Phys: Condens Matter, 17, S3393 Noguchi, 2005, Dynamics of fluid vesicles in shear flow: effect of membrane viscosity and thermal fluctuations, Phys Rev E, 72, 011901, 10.1103/PhysRevE.72.011901 Mussawisade, 2005, Dynamics of polymers in a particle-based mesoscopic solvent, J Chem Phys, 123, 144905, 10.1063/1.2041527 Lamura, 2001, Multi-particle collision dynamics: flow around a circular and a square cylinder, Europhys Lett, 56, 319, 10.1209/epl/i2001-00522-9 Whitmer, 2010, Fluid-solid boundary conditions for multiparticle collision dynamics, J Phys: Condens Matter, 22, 104106 Bolintineanu, 2012, No-slip boundary conditions and forced flow in multiparticle collision dynamics, Phys Rev E, 86, 066703, 10.1103/PhysRevE.86.066703 Poblete, 2014, Hydrodynamics of discrete-particle models of spherical colloids: a multiparticle collision dynamics simulation study, Phys Rev E, 90, 033314, 10.1103/PhysRevE.90.033314 Cerbelaud, 2017, Shear viscosity in hard-sphere and adhesive colloidal suspensions with reverse non-equilibrium molecular dynamics, Soft Matter, 13, 3909, 10.1039/C7SM00441A Shakeri, 2018, Limitation of stochastic rotation dynamics to represent hydrodynamic interaction between colloidal particles, Phys Fluids, 30, 013603, 10.1063/1.5008812 Petersen, 2010, Mesoscale hydrodynamics via stochastic rotation dynamics: Comparison with Lennard–Jones fluid, J Chem Phys, 132, 174106, 10.1063/1.3419070 de Buyl, 2017, RMPCDMD: simulations of colloids with coarse-grained hydrodynamics, chemical reactions and external fields, J Open Res Softw, 5, 3, 10.5334/jors.142 Westphal, 2014, Multiparticle collision dynamics: GPU accelerated particle-based mesoscale hydrodynamic simulations, Comput Phys Commun, 185, 495, 10.1016/j.cpc.2013.10.004 Howard, 2018, Efficient mesoscale hydrodynamics: multiparticle collision dynamics with massively parallel GPU acceleration, Comput Phys Commun, 230, 10, 10.1016/j.cpc.2018.04.009 Tao, 2008, Multiparticle collision dynamics modeling of viscoelastic fluids, J Chem Phys, 128, 144902, 10.1063/1.2850082 Ji, 2011, Mesoscale hydrodynamic modeling of a colloid in shear-thinning viscoelastic fluids under shear flow, J Chem Phys, 135, 134116, 10.1063/1.3646307 Kowalik, 2013, Multiparticle collision dynamics simulations of viscoelastic fluids: shear-thinning Gaussian dumbbells, J Chem Phys, 138, 104903, 10.1063/1.4792196 Huang, 2010, Semidilute polymer solutions at equilibrium and under shear flow, Macromolecules, 43, 10107, 10.1021/ma101836x Nikoubashman, 2016, Dynamics of single semiflexible polymers in dilute solution, J Chem Phys, 145, 234903, 10.1063/1.4971861 Nikoubashman, 2017, Equilibrium dynamics and shear rheology of semiflexible polymers in solution, Macromolecules, 50, 8279, 10.1021/acs.macromol.7b01876 Ripoll, 2006, Star polymers in shear flow, Phys Rev Lett, 96, 188302, 10.1103/PhysRevLett.96.188302 Singh, 2014, Hydrodynamic correlations and diffusion coefficient of star polymers in solution, J Chem Phys, 141, 084901, 10.1063/1.4893766 Hegde, 2011, Conformation and diffusion behavior of ring polymers in solution: a comparison between molecular dynamics, multiparticle collision dynamics, and lattice Boltzmann simulations, J Chem Phys, 135, 184901, 10.1063/1.3656761 Liebetreu, 2018, Trefoil knot hydrodynamic delocalization on sheared ring polymers, ACS Macro Lett, 7, 447, 10.1021/acsmacrolett.8b00059 Ghavami, 2017, Solvent induced inversion of core–shell microgels, ACS Macro Lett, 6, 721, 10.1021/acsmacrolett.7b00318 Chen, 2017, The effect of hydrodynamic interactions on nanoparticle diffusion in polymer solutions: a multiparticle collision dynamics study, Soft Matter, 13, 8625, 10.1039/C7SM01854A Chen, 2018, Coupling of nanoparticle dynamics to polymer center-of-mass motion in semidilute polymer solutions, Macromolecules, 51, 1865, 10.1021/acs.macromol.7b02441 Chen, 2019, Influence of polymer flexibility on nanoparticle dynamics in semidilute solutions, Soft Matter, 15, 1260, 10.1039/C8SM01834K Howard, 2015, Inertial and viscoelastic forces on rigid colloids in microfluidic channels, J Chem Phys, 142, 224908, 10.1063/1.4922323 Peltomäki, 2013, Sedimentation of single red blood cells, Soft Matter, 9, 8346, 10.1039/c3sm50592h Singh, 2018, Steady state sedimentation of ultrasoft colloids, J Chem Phys, 148, 084901, 10.1063/1.5001886 Yang, 2016, Thermoosmotic microfluidics, Soft Matter, 12, 8564, 10.1039/C6SM01692H Lou, 2018, Dynamics of a colloidal particle near a thermoosmotic wall under illumination, Soft Matter, 14, 1319, 10.1039/C7SM02196H Wysocki, 2010, Multi-particle collision dynamics simulations of sedimenting colloidal dispersions in confinement, Faraday Discuss, 144, 245, 10.1039/B901640F Prohm, 2012, Inertial microfluidics with multi-particle collision dynamics, Eur Phys J E, 35, 80, 10.1140/epje/i2012-12080-3 Segré, 1961, Radial particle displacements in Poiseuille flow of suspensions, Nature, 189, 209, 10.1038/189209a0 Kanehl, 2017, Self-organized velocity pulses of dense colloidal suspensions in microchannel flow, Phys Rev Lett, 119, 018002, 10.1103/PhysRevLett.119.018002 Nikoubashman, 2017, Self-assembly of colloidal micelles in microfluidic channels, Soft Matter, 13, 222, 10.1039/C6SM00766J Yang, 2014, A self-propelled thermophoretic microgear, Soft Matter, 10, 1006, 10.1039/c3sm52417e Burelbach, 2018, Thermophoretic forces on a mesoscopic scale, Soft Matter, 14, 7446, 10.1039/C8SM01132J Conrad, 2018, Confined flow: consequences and implications for bacteria and biofilms, Annu Rev Chem Biomol Eng, 9, 175, 10.1146/annurev-chembioeng-060817-084006 Alizadehrad, 2015, Simulating the complex cell design of Trypanosoma brucei and its motility, PLoS Comput Biol, 11, 1, 10.1371/journal.pcbi.1003967 Heddergott, 2012, Trypanosome motion represents an adaptation to the crowded environment of the vertebrate bloodstream, PLoS Pathog, 8, 1, 10.1371/journal.ppat.1003023 Rode, 2019, Sperm motility in modulated microchannels, New J Phys, 21, 013016, 10.1088/1367-2630/aaf544 Hu, 2015, Modelling the mechanics and hydrodynamics of swimming E. coli, Soft Matter, 11, 7867, 10.1039/C5SM01678A Theers, 2016, Modeling a spheroidal microswimmer and cooperative swimming in a narrow slit, Soft Matter, 12, 7372, 10.1039/C6SM01424K Theers, 2018, Clustering of microswimmers: interplay of shape and hydrodynamics, Soft Matter, 14, 8590, 10.1039/C8SM01390J Huang, 2017, Chemotactic and hydrodynamic effects on collective dynamics of self-diffusiophoretic Janus motors, New J Phys, 19, 125003, 10.1088/1367-2630/aa958c Cates, 2015, Motility-induced phase separation, Annu Rev Condens Matter Phys, 6, 219, 10.1146/annurev-conmatphys-031214-014710 Rohlf, 2008, Reactive multiparticle collision dynamics, Comput Phys Commun, 179, 132, 10.1016/j.cpc.2008.01.027 Praprotnik, 2005, Adaptive resolution molecular-dynamics simulation: changing the degrees of freedom on the fly, J Chem Phys, 123, 224106, 10.1063/1.2132286 Stalter, 2018, Molecular dynamics simulations in hybrid particle-continuum schemes: pitfalls and caveats, Comput Phys Commun, 224, 198, 10.1016/j.cpc.2017.10.016 Eisenstecken, 2018, Hydrodynamics of binary-fluid mixtures—an augmented multiparticle collison dynamics approach, Europhys Lett, 121, 24003, 10.1209/0295-5075/121/24003