Modeling forest above-ground biomass dynamics using multi-source data and incorporated models: A case study over the qilian mountains

Agricultural and Forest Meteorology - Tập 246 - Trang 1-14 - 2017
Xin Tian1,2, Min Yan1,3, Christiaan van der Tol2, Zengyuan Li1, Zhongbo Su2, Erxue Chen1, Xin Li4, Longhui Li5,6,7, Xufeng Wang4, Xiaoduo Pan4, Lushuang Gao8, Zongtao Han1
1Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Yiheyuanhou, 100091, Beijing, PR China
2Faculty of Geo-Information Science and Earth Observation, University of Twente, Hengelosestraat 99, 7500 AA Enschede, The Netherlands
3Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences,Dengzhuang South Road, 100094, Beijing, PR China
4Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China
5Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, 210023, PR China
6State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing 210023, PR China
7Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, PR China
8College of Forestry, Beijing Forestry University, Beijing 100083, PR China

Tài liệu tham khảo

Braswell, 2005, Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations, Global Change Biol., 11, 335, 10.1111/j.1365-2486.2005.00897.x Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324 Camps-Valls, 2005, Kernel-based methods for hyperspectral image classification, IEEE Trans. Geosci. Remote Sens., 43, 1351, 10.1109/TGRS.2005.846154 Chiesi, 2005, Modelling carbon budget of Mediterranean forests using ground and remote sensing measurements, Agric. For. Meteorol., 135, 22, 10.1016/j.agrformet.2005.09.011 Chiesi, 2007, Application of Biome-BGC to simulate Mediterranean forest processes, Ecol. Modell., 206, 179, 10.1016/j.ecolmodel.2007.03.032 Chiesi, 2011, Integration of ground and satellite data to model Mediterranean forest processes, Int. J. Appl. Earth Obs. Geoinf., 13, 504, 10.1016/j.jag.2010.10.006 Chirici, 2008, Non-parametric and parametric methods using satellite images for estimating growing stock volume in alpine and Mediterranean forest ecosystems, Remote Sens. Environ., 112, 2686, 10.1016/j.rse.2008.01.002 Churkina, 2003, Analyzing the ecosystem carbon dynamics of four European coniferous forests using a biogeochemistry model, Ecosystems, 6, 168, 10.1007/s10021-002-0197-2 Cohen, 1992, Estimating structural attributes of douglas-fir western hemlock forest stands from landsat and spot imagery, Remote Sens. Environ., 41, 1, 10.1016/0034-4257(92)90056-P Cohen, 1995, Estimating the age and structure of forests in a multi-ownership landscape of western oregon, USA, Int. J. Remote Sens., 16, 721, 10.1080/01431169508954436 Coops, 2007, Comparison of MODIS, eddy covariance determined and physiologically modelled gross primary production (GPP) in a Douglas-fir forest stand, Remote Sens. Environ., 107, 385, 10.1016/j.rse.2006.09.010 Crist, 1984, A physically-based transformation of Thematic Mapper data-the TM tasseled cap, IEEE Trans. Geosci. Remote Sens., 22, 256, 10.1109/TGRS.1984.350619 Czerwinski, 2014, Mapping forest growth and decline in a temperate mixed forest using temporal trend analysis of Landsat imagery, 1987–2010, Remote Sens. Environ., 141, 188, 10.1016/j.rse.2013.11.006 Duncan, 1989, An evaluation of errors in tree age estimates based on increment cores in kahikatea (Dacrycarpus dacrydioides), N. Zeal. Nat. Sci., 16, 31 Dusseux, 2015, Evaluation of SPOT imagery for the estimation of grassland biomass, Int. J. Appl. Earth Obs. Geoinf., 38, 72, 10.1016/j.jag.2014.12.003 Fayad, 2014, Coupling potential of ICESat/GLAS and SRTM for the discrimination of forest landscape types in French Guiana, Int. J. Appl. Earth Obs. Geoinf., 33, 21, 10.1016/j.jag.2014.04.005 Fazakas, 1999, Regional forest biomass and wood volume estimation using satellite data and ancillary data, Agric. For. Meteorol., 98–99, 417, 10.1016/S0168-1923(99)00112-4 Franco-Lopez, 2001, Estimation and mapping of forest stand density: volume and cover type using the k-nearest neighbors method, Remote Sens. Environ., 77, 251, 10.1016/S0034-4257(01)00209-7 Goetz, 1996, Remote sensing of net primary production in boreal forest stands, Agric. For. Meteorol., 78, 149, 10.1016/0168-1923(95)02268-6 Gonzalez, 2010, Forest carbon densities and uncertainties from Lidar QuickBird, and field measurements in California, Remote Sens. Environ., 114, 1561, 10.1016/j.rse.2010.02.011 Gonzalez, 2015, Tropical rainforest biodiversity and aboveground carbon changes and uncertainties in the Selva Central, Peru, For. Ecol. Manage., 312, 78, 10.1016/j.foreco.2013.10.019 Hardisky, 1983, Growth-response and spectral characteristics of a short spartina-alterniflora salt-marsh irrigated with fresh-water and sewage effluent, Remote Sens. Environ., 13, 57, 10.1016/0034-4257(83)90027-5 Heurich, 2008, Estimation of forestry stand parameters using laser scanning data in temperate, structurally rich natural European beech (Fagus sylvatica) and Norway spruce (Picea abies) forests, Forestry, 81, 645, 10.1093/forestry/cpn038 Holmes, 1983, Computer-assisted quality control in tree-ring dating and measurement, Tree-Ring Bull., 43, 69 Houghton, 2000, Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon, Nature, 403, 301, 10.1038/35002062 Intergovernmental Panel on Climate Change (IPCC), 2006, Agriculture, forestry, and other land use Jarvis, 1983, Productivity of temperate, deciduous and evergreen forests, 233 Kuplich, 2005, Relating SAR image texture to the biomass of regenerating tropical forests, Int. J. Remote Sens., 26, 4829, 10.1080/01431160500239107 Latifi, 2012, Evaluation of most similar neighbour and random forest methods for imputing forest inventory variables using data from target and auxiliary stands, Int. J. Remote Sens., 33, 6668, 10.1080/01431161.2012.693969 Lee, 1999, Long-term observation of the atmospheric exchange of CO2 with a temperate deciduous forest in southern Ontario, Canada, J. Geophys. Res. Atmos., 104, 15975, 10.1029/1999JD900227 Lee, 1998, On micrometeorological observations of surface-air exchange over tall vegetation, Agric. For. Meteorol., 91, 39, 10.1016/S0168-1923(98)00071-9 Li, 2009, Watershed allied telemetry experimental research, J. Geophys. Res. Atmos., 114, D22103, 10.1029/2008JD011590 Li, 2011, Random KNN feature selection – a fast and stable alternative to Random Forests, BMC Bioinf., 12, 450, 10.1186/1471-2105-12-450 Li, 2012, Modelling gross primary production in the Heihe river basin and uncertainty analysis, Int. J. Remote Sens., 33, 836, 10.1080/01431161.2011.577828 Li, 2013, Heihe watershed allied telemetry experimental research (HiWATER): scientific objectives and experimental design, Bull. Am. Meteorol. Soc., 94, 1145, 10.1175/BAMS-D-12-00154.1 Liang, 2015, Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010, Agric. For. Meteorol., 204, 22, 10.1016/j.agrformet.2015.01.015 Luckman, 1997, Texture in airborne SAR imagery of tropical forest and its relationship to forest regeneration stage, Int. J. Remote Sens., 18, 1333, 10.1080/014311697218458 Mahapatra, 2014, Analyzing training information from random forests for improved image segmentation, IEEE Trans. Image Process., 23, 1504, 10.1109/TIP.2014.2305073 Main-Knorn, 2013, Monitoring coniferous forest biomass change using a Landsat trajectory-based approach, Remote Sens. Environ., 139, 277, 10.1016/j.rse.2013.08.010 Maselli, 2008, Integration of remote sensing and ecosystem modelling techniques to estimate forest net carbon uptake, Int. J. Remote Sens., 29, 2437, 10.1080/01431160801894857 Maselli, 2009, Combining remote sensing and ancillary data to monitor the gross productivity of water-limited forest ecosystems, Remote Sens. Environ., 113, 657, 10.1016/j.rse.2008.11.008 McRoberts, 2007, Estimating areal means and variances of forest attributes using the k-nearest neighbours technique and satellite imagery, Remote Sens. Environ., 111, 466, 10.1016/j.rse.2007.04.002 Misson, 2005, Influences of recovery from clear-cut, climate variability, and thinning on the carbon balance of a young ponderosa pine plantation, Agric. For. Meteorol., 130, 207, 10.1016/j.agrformet.2005.04.001 Monni, 2007, Uncertainty of forest carbon stock changes-implications to the total uncertainty of GHG inventory of Finland, Clim. Change, 81, 391, 10.1007/s10584-006-9140-4 Monteith, 1972, Solar radiation and productivity in tropical ecosystems, J. Appl. Ecol., 9, 747, 10.2307/2401901 Næsset, 2002, Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data, Remote Sens. Environ., 80, 88, 10.1016/S0034-4257(01)00290-5 Neeff, 2005, Carbon budget estimation in Central Amazonia: successional forest modeling from remote sensing data, Remote Sens. Environ., 94, 508, 10.1016/j.rse.2004.12.002 Osmond, 2004, Changing the way we think about global change research: scaling up in experimental ecosystem science, Global Change Biol., 10, 393, 10.1111/j.1529-8817.2003.00747.x Pan, 2011, Validation of WRF model on simulating forcing data for Heihe River Basin, Sci. Cold Arid Reg., 3, 0344 Prince, 1995, Global primary production: a remote sensing approach, J. Biogeogr., 22, 815, 10.2307/2845983 Riemann, 2010, An effective assessment protocol for continuous geospatial datasets of forest characteristics using USFS Forest Inventory and Analysis (FIA) data, Remote Sens. Environ., 114, 2337, 10.1016/j.rse.2010.05.010 Running, 1988, A general model of forest ecosystem processes for regional applications. I. Hydrological balance, canopy gas exchange and primary production processes, Ecol. Modell., 42, 125, 10.1016/0304-3800(88)90112-3 Running, 1991, FOREST-BGC, a general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets, Tree Physiol., 9, 147, 10.1093/treephys/9.1-2.147 Running, 1999 Shangguan, 2012, A soil particle-size distribution dataset for regional land and climate modelling in China, Geoderma, 171, 85, 10.1016/j.geoderma.2011.01.013 Smith, 2001, Identifying influences on model uncertainty: an application using a forest carbon budget model, Environ. Manage., 27, 253, 10.1007/s002670010147 Solberg, 2013, Monitoring spruce volume and biomass with InSAR data from TanDEM-X, Remote Sens. Environ., 139, 60, 10.1016/j.rse.2013.07.036 Song, 2013, Random generalized linear model: a highly accurate and interpretable ensemble predictor, BMC Bioinf., 14, 5, 10.1186/1471-2105-14-5 Thornton, 2002, Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needle leaf forests, Agric. For. Meteorol., 113, 185, 10.1016/S0168-1923(02)00108-9 Tian, 2012, Estimation of forest above-ground biomass using multi-parameter remote sensing data over a cold and arid area, Int. J. Appl. Earth Obs. Geoinf., 14, 160, 10.1016/j.jag.2011.09.010 Tian, 2014, Estimating montane forest above-ground biomass in the upper reaches of the Heihe River Basin using Landsat-TM data, Int. J. Remote Sens., 35, 7339, 10.1080/01431161.2014.967888 Ueyama, 2009, Response of the carbon cycle in sub-arctic black spruce forests to climate change: reduction of a carbon sink related to the sensitivity of heterotrophic respiration, Agric. For. Meteorol., 149, 582, 10.1016/j.agrformet.2008.10.011 Vanderwel, 2013, Quantifying variation in forest disturbance, and its effects on above ground biomass dynamics, across the eastern United States, Global Change Biol., 19, 1504, 10.1111/gcb.12152 Veroustraete, 2002, Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data, Remote Sens. Environ., 83, 376, 10.1016/S0034-4257(02)00043-3 Wang, 1998, Study on biomass of water conservation forest on north slope of Qilian mountains, J. Fujian Coll. For., 18, 319 Wang, 2000, A study on carbon balance of Picea crassifolia in Qilian Mountains, J. Northwest For. Univ., 15, 9 Wang, 2013, Validation of MODIS GPP product at 10 flux sites in northern China, Int. J. Remote Sens., 34, 587, 10.1080/01431161.2012.715774 Wang, 2014, Coupling of a biogeochemical model with a simultaneous heat and water model and its evaluation at an alpine meadow site, Environ. Earth Sci., 72, 4085, 10.1007/s12665-014-3300-z White, 2000, Parameterisation and sensitivity analysis of the Biome-BGC terrestrial ecosystem model: net primary production controls, Earth Interact., 4, 1, 10.1175/1087-3562(2000)004<0003:PASAOT>2.0.CO;2 Wulder, 2007, Integrating profiling LIDAR with Landsat data for regional boreal forest canopy attribute estimation and change characterization, Remote Sens. Environ., 110, 123, 10.1016/j.rse.2007.02.002 Xiao, 2014, Use of general regression neural networks for generating the GLASS Leaf Area Index Product from time-series MODIS surface reflectance, IEEE Trans. Geosci. Remote Sens., 52, 209, 10.1109/TGRS.2013.2237780 Zhang, 2008, Calibration of Terra/MODIS gross primary production over an irrigated cropland on the North China Plain and an alpine meadow on the Tibetan Plateau, Global Change Biol., 14, 757, 10.1111/j.1365-2486.2008.01538.x Zhao, 2005, Methods for modelling of temporal and spatial distribution of air temperature at landscape scale in the southern Qilian mountains, China, Ecol. Modell., 189, 209, 10.1016/j.ecolmodel.2005.03.016 Zheng, 2014, Soil CO2 efflux along an elevation gradient in Qinghai spruce forests in the upper reaches of the Heihe River, northwest China, Environ. Earth Sci., 71, 2065, 10.1007/s12665-013-2608-4 Zhong, 2008, The major natural disaster and the corresponding protection of the water conservation forests in Qilian Mountains, Agric. Sci. Technol. Inf., 2, 21