Modeling for soft sensor systems and parameters updating online
Tài liệu tham khảo
Zhong, 2000, MIMO soft sensors for estimating product quality with online correction, Trans. IChemE, 78, 612, 10.1205/026387600527554
Kadlec, 2009, Data-driven soft sensors in the process industry, Comput. Chem. Eng., 33, 795, 10.1016/j.compchemeng.2008.12.012
Hui, 2004, RBF-ARX model-based nonlinear system modeling and predictive control with application to a NOx decomposition process, Control Eng. Pract., 12, 191, 10.1016/S0967-0661(03)00050-9
Dae, 2006, Nonlinear dynamic partial least squares modeling of a full-scale biological wastewater treatment plant, Process Biochem., 41, 2050, 10.1016/j.procbio.2006.05.006
Cao, 2013, Modeling of soft sensor for chemical process, J. Chem. Ind. Eng., 64, 788
Hector, 2011, A reduced order soft sensor approach and its application to a continuous digester, J. Process Control, 21, 489, 10.1016/j.jprocont.2011.02.001
Ma, 2005, Discuss about dynamic soft-sensing modeling, J. Chem. Ind. Eng., 56, 1516
Ania, 2003, A nonlinear model predictive control system based on wiener piecewise linear models, J. Process Control, 13, 655, 10.1016/S0959-1524(02)00121-X
Martin, 2008, Identification of wiener models using optimal local linear models, Simulat. Model. Pract. Theory, 16, 1055, 10.1016/j.simpat.2008.05.012
Boyd, 1985, Fading memory and the problem of approximating nonlinear operators with volterra series, IEEE Trans. Circ. Syst., 32, 1150, 10.1109/TCS.1985.1085649
Stefan, 2009, Support vector method for identification of wiener models, J. Process Control, 19, 1174, 10.1016/j.jprocont.2009.03.003
Ferreira, 2012, Local convergence analysis of inexact Gauss–Newton like methods under majorant condition, J. Comput. Appl. Math., 236, 2487, 10.1016/j.cam.2011.12.008
Richard, 1996, Gauss–Newton and M-estimation for ARMA processes with infinite variance, Stochast. Process. Appl., 63, 75, 10.1016/0304-4149(96)00063-4
Ding, 2005, Hierarchical gradient-based identification of multivariable discrete-time systems, Automatica, 41, 315, 10.1016/j.automatica.2004.10.010
Ding, 2006, Convergence analysis of estimation algorithms for dual-rate stochastic systems, Appl. Math. Comput., 176, 245, 10.1016/j.amc.2005.09.048
Eykhoff, 1974
Tsidu, 2005, On the accuracy of covariance matrix: Hessian versus Gauss–Newton methods in atmospheric remote sensing with infrared spectroscopy, J. Quant. Spectrosc. Radiat. Transfer, 96, 103, 10.1016/j.jqsrt.2004.11.014
Tarvainen, 2008, Gauss–Newton reconstruction method for optical tomography using the finite element solution of the radiative transfer equation, J. Quant. Spectrosc. Radiat. Transfer, 109, 2767, 10.1016/j.jqsrt.2008.08.006
Ljung, 1983
Solo, 1990, Stochastic adaptive control and martingale limit theory, IEEE Trans. Autom. Control, 35, 66, 10.1109/9.45146
Tian, 2010, Development of a novel soft sensor using a local model network with an adaptive subtractive clustering approach, Ind. Eng. Chem. Res., 49, 4738, 10.1021/ie901098w
Dai, 2006, Assumed inherent sensor inversion based ANN dynamic soft-sensing method and its application in erythromycin fermentation process, Comput. Chem. Eng., 30, 1203, 10.1016/j.compchemeng.2006.02.001
Elom, 2011, A decoupled multiple model approach for soft sensors design, Control Eng. Pract., 19, 126, 10.1016/j.conengprac.2010.10.006
Strejc, 1980, Least squares parameter estimation, Automatica, 16, 535, 10.1016/0005-1098(80)90077-1
Qin, 1996
Principe, 2000
Shang, 2013, Novel Bayesian framework for dynamic soft sensor based on support vector machine with finite impulse response, IEEE Trans. Control Syst. Technol., 10.1109/TCST.2013.2278412
Wu, 2010, A novel calibration approach of soft sensor based on multirate data fusion technology, J. Process Control, 20, 1252, 10.1016/j.jprocont.2010.09.003
Fu, 2007, MIMO soft-sensor model of nutrient for compound fertilizer based on hybrid modeling technique, J. Chem. Ind. Eng., 15, 554
Luo, 2005
Ding, 1997, Martingale hyperconvergence theorem and the convergence of forgetting factor least squares algorithm, Control Theory Appl., 14, 90
Liu, 2013, Convergence properties of the least squares estimation algorithm for multivariable systems, Appl. Math. Model., 37, 476, 10.1016/j.apm.2012.03.007
Peng, 2002, Structured parameter optimization method for the radial basis function-based state-dependent autoregressive model, J. Syst. Sci., 33, 1087, 10.1080/0020772021000059753
Gomez, 2004, Wiener model identification and predictive control of a pH neutralization process, IEE Proc. Control Theory Appl., 151, 329, 10.1049/ip-cta:20040438
Mahmoodi, 2009, Nonlinear model predictive control of a pH neutralization process based on Wiener-Laguerre model, Chem. Eng. J., 146, 328, 10.1016/j.cej.2008.06.010