Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Mô hình hóa sự tiến hóa của cụm khuyết tật trong vật liệu cấu trúc chịu bức xạ: Tập trung vào việc so sánh với các nghiên cứu đặc trưng thực nghiệm có độ phân giải cao
Tóm tắt
Đã được xác định rõ rằng việc tiếp xúc các vật liệu cấu trúc kim loại với môi trường bức xạ dẫn đến sự tiến hóa vi mô đáng kể, thay đổi tính chất và suy giảm hiệu suất, điều này hạn chế khả năng vận hành kéo dài của các lò phản ứng nước nhẹ thế hệ hiện tại và hạn chế thiết kế của các lò phản ứng phân hạch và nhiệt hạch tiên tiến. Hơn nữa, cũng đã được công nhận rằng các tác động bức xạ này là một ví dụ cổ điển của diễn biến hiện tượng đa quy mô vốn có và rằng sự kết hợp của các đặc trưng gây ra bởi bức xạ và sự suy giảm tính chất tương ứng phụ thuộc vào một loạt các biến vật liệu và bức xạ. Sự tiến hóa vốn có đa quy mô này nhấn mạnh tầm quan trọng của việc liên kết chặt chẽ các mô hình với việc đặc trưng thực nghiệm có độ phân giải cao về vi cấu trúc bị hư hại do bức xạ. Bài viết này cung cấp một cái nhìn tổng quan về các mô hình gần đây về sự tiến hóa của vi cấu trúc khuyết tật trong các vật liệu có cấu trúc tâm thể hình khối sau khi bị bức xạ, cung cấp sự phù hợp tốt với các đo đạc thực nghiệm, và trình bày một số thách thức nổi bật, điều này sẽ yêu cầu việc đặc trưng và mô hình hóa có độ phân giải cao được phối hợp để giải quyết.
Từ khóa
#bức xạ #vật liệu cấu trúc #tiến hóa vi mô #khuyết tật #mô hình hóa #đặc trưng thực nghiệm caoTài liệu tham khảo
G.R. Odette, B.D. Wirth, D.J. Bacon, and N.M. Ghoneim: Multiscale-multiphysics modeling of radiation-damaged materials: Embrittlement of pressure vessel steels. MRS Bull. 26, 176 (2001).
E.E. Bloom: The challenge of developing structural materials for fusion power systems. J. Nucl. Mater. 258–263, 7 (1998).
E.E. Bloom, N. Ghoneim, R. Jone, R. Kurtz, G.R. Odette, A. Rowecliffe, D. Smith, and F.W. Wiffen: Advanced Materials Program, appendix D of the VLT roadmap. (1999). Available at http://vlt.ucsd.edu/.
S.J. Zinkle and N.M. Ghoniem: Operating temperature windows for fusion reactor structural materials. Fusion Eng. Des. 51–52, 55 (2000).
T. Muroga, M. Gasparotto, and S.J. Zinkle: Overview of materials research for fusion reactors. Fusion Eng. Des. 61–62, 13 (2002).
M. Victoria, N. Baluc, C. Bailat, Y. Dai, M.I. Luppo, R. Schaublin, and B.N. Singh: The microstructure and associated tensile properties of irradiated fcc and bcc metals. J. Nucl. Mater. 276, 114 (2000).
T. Diaz de la Rubia, H.M. Zbib, T.A. Khraishi, B.D. Wirth, M. Victoria, and M.J. Caturla: Multiscale modelling of plastic flow localization in irradiated materials. Nature 406, 871 (2000).
B.D. Wirth, G.R. Odette, J. Marian, L. Ventelon, J.A. Young, and L.A. Zepeda-Ruiz: Multiscale modeling of radiation damage in Fe-based alloys in the fusion environment. J. Nucl. Mater. 329–333, 103 (2004).
G.J. Ackland, D.J. Bacon, A.F. Calder, and T. Harry: Computer simulation of point defect properties in dilute Fe–Cu alloy using a many-body interatomic potential. Philos. Mag. A 75, 713 (1997).
R.E. Stoller, G.R. Odette, and B.D. Wirth: Primary damage formation in bcc iron. J. Nucl. Mater. 251, 49 (1997).
W.J. Phythian, R.E. Stoller, A.J.E. Foreman, A.F. Calder, and D.J. Bacon: A comparison of displacement cascades in copper and iron by molecular dynamics and its application to microstructural evolution. J. Nucl. Mater. 223, 245 (1995).
J.B. Gibson, A.N. Goland, M. Milgram, and G.H. Vineyard: Dynamics of radiation damage. Phys. Rev. 120, 1229 (1960).
R.S. Averback and T. Diaz de la Rubia: Displacement damage in irradiated metals and semiconductors. Solid State Phys. 51, 281 (1998).
W. Setyawan, G. Nandipati, K.J. Roch, H.L. Heinisch, B.D. Wirth, and R.J. Kurtz: Displacement cascades and defects annealing in tungsten, Part I: Defect database from molecular dynamics simulations. J. Nucl. Mater.(2015, in press). doi:https://doi.org/10.1016/j.jnucmat.2014.12.056.
N. Soneda and T. Diaz de la Rubia: Defect production, annealing kinetics and damage evolution in α-Fe: An atomic-scale computer simulation. Philos. Mag. A 78, 995 (1998).
B.D. Wirth, G.R. Odette, D. Maroudas, and G.E. Lucas: Dislocation loop structure, energy and mobility of self-interstitial atom clusters in bcc iron. J. Nucl. Mater. 276, 33 (1999).
N. Anento, A. Serra, and Y.N. Osetsky: Atomistic study of multi-mechanism diffusion by self-interstitial defects in α-Fe. Model. Simul. Mater. Sci. Eng. 18, 025008 (2010).
B.D. Wirth, G.R. Odette, and R.E. Stoller: Recent progress toward an integrated multiscale-multiphysics model of reactor pressure vessel embrittlement, in Advances in Materials Theory and Modeling–Bridging over Multiple-length and Time Scales (Mater. Res. Soc. Symp. Proc. 677, San Francisco, CA, 2001) 677–AA5.2.
H.L. Heinisch and B.N. Singh: Stochastic annealing simulation of intracascade defect interactions. J. Nucl. Mater. 251, 77 (1997).
M.J. Caturla, N. Soneda, E.A. Alonso, B.D. Wirth, and T. Diaz de la Rubia: Comparative study of radiation damage accumulation in Cu and Fe. J. Nucl. Mater. 276, 13 (2000).
P.R. Monasterio, B.D. Wirth, and G.R. Odette: Kinetic Monte Carlo modeling of cascade aging and damage accumulation in Fe–Cu alloys. J. Nucl. Mater. 361, 127 (2007).
G. Nandipati, W. Setyawan, H.L. Heinisch, K.J. Roche, R.J. Kurtz, and B.D. Wirth: Displacement cascades and defect annealing in tungsten, Part II: Object kinetic Monte Carlo simulation of tungsten cascade aging. J. Nucl. Mater. (2015, in press). doi: https://doi.org/10.1016/j.nucmat.2014.09.067.
M. Eldrup and B.N. Singh: Void nucleation in fcc and bcc metals: A comparison of neutron irradiated copper and iron. Mater. Sci. Forum 363–365, 79 (2001).
B.D. Wirth, G.R. Odette, P. Asoka-Kumar, R.H. Howell, and P.A. Sterne: Characterization of nanostructural features in irradiated reactor pressure vessel model alloys. In Proceedings of the 10th International Symposium on Environmental Degradation of Materials in Light Water Reactors, G.S. Was ed.; National Association of Corrosion Engineers2002.
G.R. Odette: On mechanisms controlling swelling in ferritic and martensitic alloys. J. Nucl. Mater. 155–157, 921 (1988).
H. Matsui, K. Fukumoto, D.L. Smith, H.M. Chung, W. van Witzenburg, and S.N. Votinov: Status of vanadium alloys for fusion reactors. J. Nucl. Mater. 233–237, 92 (1996).
R. Schaublin, P. Spatig, and M. Victoria: Microstructure assessment of the low activation ferritic/martensitic steel F82H. J. Nucl. Mater. 258–263, 1178 (1998).
A.F. Rowcliffe, J.P. Robertson, R.L. Klueh, K. Shiba, D.J. Alexander, M.L. Grossbeck, and S. Jitsukawa: Fracture toughness and tensile behavior of ferritic–martensitic steels irradiated at low temperatures. J. Nucl. Mater. 258–263, 1275 (1998).
P. Spatig, R. Schaublin, S. Gyger, and M. Victoria: Evolution of the mechanical properties of the F82H ferritic/martensitic steel after 590 MeV proton irradiation. J. Nucl. Mater. 258–263, 1345 (1998).
R. Schaublin, P. Spatig, and M. Victoria: Chemical segregation behavior of the low activation ferritic/martensitic steel F82H. J. Nucl. Mater. 258–263, 1350 (1998).
D.S. Gelles, P.M. Rice, S.J. Zinkle, and H.M. Chung: Microstructural examination of irradiated V–(4–5%)Cr–(4–5%)Ti. J. Nucl. Mater. 258–263, 1380 (1998).
P.M. Rice and S.J. Zinkle: Temperature dependence of the radiation damage microstructure in V–4Cr–4Ti neutron irradiated to low dose. J. Nucl. Mater. 258–263, 1414 (1998).
J. Gazda, M. Meshii, and H.M. Chung: Microstructure of V–4Cr–4Ti alloy after low-temperature irradiation by ions and neutrons. J. Nucl. Mater. 258–263, 1437 (1998).
E.V. van Osch and M.I. De Vries: Irradiation hardening of V–4Cr–4Ti. J. Nucl. Mater. 271–272, 162 (1999).
Y. Candra, K. Fukumoto, A. Kimura, and H. Matsui: Microstructural evolution and hardening of neutron irradiated vanadium alloys at low temperatures in Japan Material Testing Reactor. J. Nucl. Mater. 271–272, 301 (1999).
D.H. Xu, B.D. Wirth, M.M. Li, and M.A. Kirk: Combining in situ transmission electron microscopy irradiation experiments with cluster dynamics modeling to study nanoscale defect agglomeration in structural metals. Acta Mater. 60, 4286 (2012).
D. Xu and B.D. Wirth: Spatially dependent rate theory modeling of thermal desorption spectrometry of helium-implanted iron. Fusion Sci. Technol. 56, 1064 (2009).
D. Xu and B.D. Wirth: Modeling spatially dependent kinetics of helium desorption in BCC iron following He ion implantation. J. Nucl. Mater. 403, 184 (2010).
D. Xu, X. Hu, and B.D. Wirth: A phase-cut method for multi-species kinetics: Sample application to nanoscale defect cluster evolution in alpha iron following helium ion implantation. Appl. Phys. Lett. 102, 011904 (2013).
X. Hu, D. Xu, T.S. Byun, and B.D. Wirth: Modeling of irradiation hardening of iron after low-dose and low-temperature neutron irradiation. Model. Simul. Sci. Eng. 22, 0655002 (2014).
D. Xu, B.D. Wirth, M. Li, and M.A. Kirk: Defect microstructural evolution in ion irradiated metallic nanofoils: Kinetic Monte Carlo simulation versus cluster dynamics modeling and in situ transmission electron microscopy experiments. Appl. Phys. Lett. 101, 101905 (2012).
D. Xu, B.D. Wirth, M. Li, and M.A. Kirk: Recent work towards understanding defect evolution in thin molybdenum foils through in situ ion irradiation under TEM and coordinated cluster dynamics modeling. Curr. Opin. Solid State Mater. Sci. 16, 109 (2012).
M. Li, M.A. Kirk, P.M. Baldo, D. Xu, and B.D. Wirth: Study of defect evolution by TEM with in situ ion irradiation and coordinated modeling. Philos. Mag. 92(16), 2048 (2012).
C.S. Becquart and B.D. Wirth: Kinetic Monte Carlo simulations of irradiation effects. In Comprehensive Nuclear Materials, Elsevier, 2012, Chapter 1.14.
A.A. Kohnert and B.D. Wirth: Phys. Rev. B (2014, submitted).
A.A. Kohnert: The kinetics of dislocation loop formation in ferritic alloys through the aggregation of irradiation induced defects. Ph.D. Thesis, University of California, Berkeley, 2014.
C.J. Ortiz and M.J. Caturla: Simulation of defect evolution in irradiated materials: Role of intracascade clustering and correlated recombination. Phys. Rev. B 75, 184101 (2007).
C.J. Ortiz, P. Pichler, T. Fuhner, F. Cristiano, B. Colombeau, N.E.B. Cowern, and A. Claverie: A physically based model for the spatial and temporal evolution of self-interstitial agglomerates in ion implanted silicon. J. Appl. Phys. 96, 4866 (2004).
M.V. Smoluchowski: A mathematical theory of coagulation kinetics of colloidal solutions. Z. Phys. Chem. 92, 192 (1917).
T.R. Waite: Theoretical treatment of the kinetics of diffusion-limited reactions. Phys. Rev. B 107, 463 (1957).
H.L. Heinisch, B.N. Singh, and S.I. Golubov: The effects of one-dimensional glide on the reaction kinetics of interstitial clusters. J. Nucl. Mater. 283, 737 (2000).
H.L. Heinisch, H. Trinkaus, and B.N. Singh: Kinetic Monte Carlo studies of the reaction kinetics of crystal defects that diffuse one-dimensionally with occasional transverse migration. J. Nucl. Mater. 367–370, 332 (2007).
P. Erhart and J. Marian: Calculation of the substitutional fraction of ion-implanted He in an α-Fe target. J. Nucl. Mater. 414, 426 (2011).
R.E. Stoller, S.I. Golubov, C. Domain, and C.S. Becquart: Mean field rate theory and object kinetic Monte Carlo: A comparison of kinetic models. J. Nucl. Mater. 382, 77 (2008).
J.F. Ziegler, J.P. Biersack, and U. Littmark: The Stopping and Range of Ions in Matter (Pergamon, New York, 1984).
P.M. Derlet, D. Nguyen-Manh, and S.L. Dudarev: Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals. Phys. Rev. B 76, 054107 (2007).
A.B. Bortz, M.H. Kalos, and J.L. Lebowitz: New algorithm for Monte-Carlo simulations of Ising spin systems. J. Comp. Phys. 17, 10 (1975).
C.H. Woo and B.N. Singh: Production bias due to clustering of point defects in irradiation-induced cascades. Philos. Mag. A 65, 889 (1992).
K. Arakawa, K. Ono, M. Isshiki, K. Mimura, M. Uchikoshi, and H. Mori: Observation of the one-dimensional diffusion of nanometer-sized dislocation loops. Science 318, 956 (2007).
A.H. Cottrell: Dislocation theory of yielding and strain ageing of iron. Proc. Phys. Soc. 62, 49 (1949).
M. Eldrup, B.N. Singh, S.J. Zinkle, T.S. Byun, and K. Farrell: Dose dependence of defect accumulation in neutron irradiated copper and iron. J. Nucl. Mater. 307–311, 912 (2002).
S.J. Zinkle and B.N. Singh: Microstructure of neutron-irradiated iron before and after tensile deformation. J. Nucl. Mater. 351, 269 (2006).
M. Hernandez-Mayoral, Z. Yao, M.L. Jenkins, and M.A. Kirk: Heavy-ion irradiations of Fe and Fe–Cr model alloys Part 2: Damage evolution in thin-foils at higher doses. Philos. Mag. 88, 2881 (2008).
Z. Yao, M. Hernandez-Mayoral, M. Jenkins, and M.A. Kirk: Heavy-ion irradiations of Fe and Fe–Cr model alloys Part 1: Damage evolution in thin-foils at lower doses. Philos. Mag. 88, 2851 (2008).
Z. Yao, M. Jenkins, M. Hernandez-Mayoral, and M.A. Kirk: The temperature dependence of heavy-ion damage in iron: A microstructural transition at elevated temperatures. Philos. Mag. 90, 4623 (2010).
C. Topbasi, A.T. Motta, and M.A. Kirk: In situ study of heavy ion induced radiation damage in NF616 (P92) alloy. J. Nucl. Mater. 425, 48 (2012).
D. Kaoumi, J. Adamson, and M. Kirk: Microstructure evolution of two model ferritic/martensitic steels under in situ ion irradiation at low doses (0–2 dpa). J. Nucl. Mater. 445, 12 (2014).
M.A. Kirk, P.M. Baldo, A.C. Liu, E.A. Ryan, R.C. Birtcher, Z. Yao, S. Xu, M.L. Jenkins, M. Hernandez-Mayoral, D. Kaoumi, and A.T. Motta: In situ transmission electron microscopy and ion irradiation of ferritic materials. Microsc. Res. Tech. 72, 82 (2009).
M. Jenkins, Z. Yao, M. Hernndez-Mayoral, and M. Kirk: Damage development in FeCr alloys under heavy-ion irradiation by IVEM. J. Nucl. Mater. 389, 197 (2009).
M.L. Jenkins, C.A. English, and B.L. Eyre: Heavy-ion irradiation of alpha-iron. Philos. Mag. A 38, 97 (1978).
C. Topbasi: Microstructural evolution of ferritic-martensitic steels under heavy ion irradiation. Ph.D. Thesis, Pennsylvania State University, 2014.
Y. Satoh and H. Matsui: Obstacles for one-dimensional migration of interstitial clusters in iron. Philos. Mag. 89, 1489 (2009).
T. Hamaoka, Y. Satoh, and H. Matsui: One-dimensional motion of interstitial clusters in iron-based binary alloys observed using a high-voltage electron microscope. J. Nucl. Mater. 433, 180 (2013).
K. Arakawa, H. Mori, and K. Ono: Formation process of dislocation loops in iron under irradiations with low-energy helium, hydrogen ions or high-energy electrons. J. Nucl. Mater. 307–311, 272 (2002).
C.C. Fu, J.D. Torre, F. Willaime, J.L. Bocquet, and A. Barbu: Multiscale modeling of defect kinetics in irradiated iron. Nat. Mater. 4, 68 (2005).
C.C. Fu, F. Willaime, and P. Ordejon: Stability and mobility of mono- and di-interstitials in alpha-Fe. Phys. Rev. Lett. 92, 175503 (2004).
A.V. Barashev, S.I. Golubov, Y.N. Osetsky, and R.E. Stoller: Reaction kinetics of non-localised particle–trap complexes. Philos. Mag. 90, 897 (2010).