Modeling climate and its changes: Current problems

Herald of the Russian Academy of Sciences - Tập 82 Số 2 - Trang 111-119 - 2012
V. P. Dymnikov, V. N. Lykosov, E. M. Volodin

Tóm tắt

Từ khóa


Tài liệu tham khảo

“IPCC Fourth Assessment Report,” in Intergovernmental Panel on Climate Change, Ed. by S. D. Solomon, D. Qin, M. Manning, Z. Chen, et al. (Cambridge Univ. Press, New York, 2007).

V. P. Dymnikov and A. N. Filatov, Basics of the Mathematical Theory of Climate (VINITI, Moscow, 1994) [in Russian].

V. Bjerknes, “Das Problem von der Wettervorhersage, betrachtet vom Standpunkt der Mechanik und der Physik,” Meteorol. Z. 21, 1 (1904).

L. F. Richardson, Weather Prediction by Numerical Process (Cambridge Univ. Press, 1922).

R. Courant, K. Friedrichs, and H. Lewy, “Uber die partiellen Differentialgleichungen der matematischen Physik,” Math. Ann. 100 (1928).

I. A. Kibel’, “Application to Meteorology of the Equations of the Dynamics of a Baroclinic Fluid,” Izv. Akad. Nauk SSSR. Ser. Geogr. Geofiz., No. 5, 627 (1940).

I. A. Kibel’, Introduction to Hydrodynamic Methods of Short-Term Weather Forecasting (Gostekhizdat, Moscow, 1957) [in Russian].

J. G. Charney, R. Fjörtoft, and J. von Neumann, “Numerical Integrations of the Barotropic Vorticity Equations,” Tellus 2 (1950).

A. A. Dorodnitsyn, B. I. Izvekov, and M. E. Shvets, “Mathematical Theory of General Circulation,” Meteorol. Gidrol., No. 4 (1939).

N. Phillips, “The General Circulation of the Atmosphere: a Numerical Experiment,” Quart. J. R. Meteorol. Soc. 82 (1956).

J. Smagorinsky, “General Circulation Experiment with the Primitive Equations. I. The Basic Experiment,” Mon. Wea. Rev. 91 (1963).

A. S. Sarkisyan, Theoretical Basics and Computation of Oceanic Currents (Gidrometeoizdat, Leningrad, 1966) [in Russian].

K. A. Bryan, “Numerical Method for the Study of the Circulation of the World Ocean,” J. Comput. Phys. 4 (1969).

S. Manabe and K. Bryan, “Climate and the Ocean Circulation,” Mon. Wea. Rev. 97 (1969).

G. I. Marchuk, V. P. Dymnikov, V. B. Zalesnyi, et al., Mathematical Modeling of General Circulation of the Atmosphere and Ocean (Gidrometeoizdat, Leningrad, 1984) [in Russian].

V. P. Meleshko, V. M. Kattsov, P. V. Sporyshev, et al., “The Study of Possible Climate Changes with Models of the General Circulation of the Atmosphere and Ocean,” in Climate Changes and Their Consequences: Proceedings of the Special Session of the Academic Council of the Center of International Cooperation in Environmental Problems Dedicated to the 80th Anniversary of Academician M.I. Budyko (May 19–20, 1999) (St. Petersburg, 2002) [in Russian].

I. I. Mokhov, P. F. Demchenko, A. V. Eliseev, et al., “Estimation of Global and Regional Climate Changes during the 19th–21st Centuries on the Basis of the IAP RAS Model with Consideration for Anthropogenic Forcing,” Izv. Atmospheric Oceanic Phys. 38(5), 555 (2002).

V. P. Dymnikov, V. N. Lykosov, E. M. Volodin, et al., “Modeling Climate and Its Changes,” in Current Problems of Computational Mathematics and Mathematical Modeling, Vol. 2: Mathematical Modeling (Nauka, Moscow, 2005) [in Russian].

K. S. Gage and G. D. Nastrom, “On the Spectrum of Atmospheric Velocity Fluctuations Seen by MST/ST Radar and Their Interpretation,” Radio Sci. 20 (1990).

E. M. Volodin and N. A. Dianskii, “Simulation of Climate Changes in the 20th-22nd Centuries with a Coupled Atmosphere-Ocean General Circulation Model,” Izv. Atmospheric Oceanic Phys. 42(3), 267 (2006).

E. M. Volodin, N. A. Dianskii, and A. V. Gusev, “Simulating Present-Day Climate with the INMCM4.0 Coupled Model of the Atmospheric and Oceanic General Circulations,” Izv. Atmospheric Oceanic Phys. 46(4), 414 (2010).

E. M. Volodin, V. Ya. Galin, A. V. Gusev, et al., “Earth System Model of INM RAS,” Russ. J. Numer. Anal. Math. Modelling 25(5) (2010).

E. Kalnay, M. Kanamitsu, R. Kistler, et al., “The NCEP/NCAR 40-Year Reanalysis Project,” Bull. Am. Meteorol. Soc. 77 (1996).

V. A. Semenov, M. Latif, D. Dommenget, et al., “The Impact of North Atlantic-Arctic Multidecadal Variability on Northern Hemisphere Surface Air Temperature,” J. Climate 23 (2010).

V. Ya. Galin, S. P. Smyshlyaev, and E. M. Volodin, “Combined Chemistry-Climate Model of the Atmosphere,” Izv. Atmospheric Oceanic Phys. 43(4), 399 (2007).

E. M. Volodin, S. V. Kostrykin, and A. G. Ryaboshapko, “Simulation of Climate Change Induced by Injection of Sulfur Compounds into the Stratosphere,” Izv. Atmospheric Oceanic Phys. 47(4), 430 (2011).

V. A. Zubov, E. V. Rozanov, I. V. Rozanova, et al., “Simulation of Changes in Global Ozone and Atmospheric Dynamics in the 21st Century with the Chemistry-Climate Model SOCOL,” Izv. Atmospheric Oceanic Phys. 47(3), 301 (2011).

M. Satoh, H. Tomita, H. Miura, et al., “Development of a Global Cloud Resolving Model. A Multi-Scale Structure of Tropical Convections,” J. Earth Simulator 3 (2005).

J. Shukla, R. Hagedorn, B. Hoskins, et al., “Revolution in Climate Prediction Is Both Necessary and Possible. A Declaration at the World Modeling Summit for Climate Prediction,” Bull. Am. Meteorol. Soc. 90 (2009).

W.-K. Tao, J.-D. Chern, R. Atlas, et al., “A Multiscale Modeling System,” Bull. Am. Meteorol. Soc. 90 (2009).