Modeling cell-to-cell spread of HIV-1 with logistic target cell growth

Journal of Mathematical Analysis and Applications - Tập 426 - Trang 563-584 - 2015
Xiulan Lai1, Xingfu Zou1
1Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7, Canada

Tài liệu tham khảo

Ciupe, 2006, Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models, Math. Biosci., 200, 1, 10.1016/j.mbs.2005.12.006 Culshaw, 2003, A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay, J. Math. Biol., 46, 425, 10.1007/s00285-002-0191-5 De Boer, 1998, Target cell limited and immune control models of HIV infection: a comparison, J. Theoret. Biol., 190, 201, 10.1006/jtbi.1997.0548 Lai, 2014, Modeling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-cell transmission, SIAM J. Appl. Math., 74, 898, 10.1137/130930145 Li, 2011, Dynamical behaviors of an HBV infection model with logistic hepatocyte growth, Math. Comput. Modelling, 54, 704, 10.1016/j.mcm.2011.03.013 Sattentau, 2008, Avoiding the void: cell-to-cell spread of human viruses, Nat. Rev., Microbiol., 6, 28, 10.1038/nrmicro1972 Sattentau, 2010, Cell-to-cell spread of retroviruses, Viruses, 2, 1306, 10.3390/v2061306 Sattentau, 2011, The direct passage of animal viruses between cells, Curr. Opin. Virol., 1, 396, 10.1016/j.coviro.2011.09.004 Smith, 1995 Smith, 2001, Robust persistence for semidynamical systems, Nonlinear Anal., 47, 6169, 10.1016/S0362-546X(01)00678-2 Stafford, 2000, Modeling plasma virus concentration during primary infection, J. Theoret. Biol., 203, 285, 10.1006/jtbi.2000.1076 Thieme, 1992, Convergence results and a Poincaré–Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30, 755, 10.1007/BF00173267 Yu, 1998, Computation of normal forms via a perturbation technique, J. Sound Vib., 211, 19, 10.1006/jsvi.1997.1347 Yu, 2005, Closed-form conditions of bifurcation points for general differential equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15, 1467, 10.1142/S0218127405012582 Yu, 1988, A perturbation analysis of interactive static and dynamical bifurcation, IEEE Trans. Automat. Control, 33, 28, 10.1109/9.358 Zhao, 2003