Mô hình hóa sản xuất bikaverin bởi Fusarium oxysporum CCT7620 trong các nền văn hóa bình lắc
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahmad MN, Holland CR, Mckay G (1994) Mass transfer studies in batch fermentation: mixing characteristics. J Food Eng 23:145–158. https://doi.org/10.1016/0260-8774(94)90083-3
Akilandeswari P, Pradeep BV (2016) Exploration of industrially important pigments from soil fungi. Appl Microbiol Biotechnol 100:1631–1643. https://doi.org/10.1007/s00253-015-7231-8
Avalos J, Fernández-Martín R, Prado MM et al (1999) Biosíntesis de giberelinas, bikaverina y carotenoides en Gibberella fujikuroi. In: López C, Alonso JE (eds) Biotecnología y aplicaciones de microorganismos pigmentados. Universidade da Coruña, Coruña, pp 169–188
Balan J, Fuska J, Kuhr I, Kuhrová V (1970) Bikaverin, an antibiotic from Gibberella fujikuroi, effective against Leishmania brasiliensis. Folia Microbiol (Praha) 15:479–484. https://doi.org/10.1007/BF02880192
Bell AA, Wheeler MH, Liu J et al (2003) United States department of agriculture—agricultural research service studies on polyketide toxins of Fusarium oxysporum f sp vasinfectum: potential targets for disease control. Pest Manag Sci 59:736–747. https://doi.org/10.1002/ps.713
Brewer D, Arsenault GP (1973) Production of bikaverin by Fusarium oxysporum and its identity with lycopersin. J Antibiot Antibiot 26:778–781. https://doi.org/10.7164/antibiotics.26.778
Chávez-Parga MDC, González-Ortega O, Sánchez-Cornejo G et al (2005) Mathematical description of bikaverin production in a fluidized bed bioreactor. World J Microbiol Biotechnol 21:683–688. https://doi.org/10.1007/s11274-004-3854-0
Cornforth W, Robinson PM, Ireland N (1971) Isolation and characterization of a fungal vacuolation factor (bikaverin). J Chem Soc 16:2786–2788. https://doi.org/10.1039/J39710002786
Deshmukh R, Mathew A, Purohit HJ (2014) Characterization of antibacterial activity of bikaverin from Fusarium sp. HKF15. J Biosci Bioeng 117:443–448. https://doi.org/10.1016/j.jbiosc.2013.09.017
Dufossé L, Galaup P, Yaron A et al (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci Technol 16:389–406. https://doi.org/10.1016/j.tifs.2005.02.006
Escamilla-Silva E, Poggi-Varaldo H, Mayra M et al (2001) Selective production of bikaverin in a fluidized bioreactor with immobilized Gibberella fujikuroi. World J Microbiol Biotechnol 17:469–474. https://doi.org/10.1023/A:1011913316988
Fuska J, Proksa B, Fuskova A (1975) New potential cytotoxic and antitumor substances. I. In vitro effect of bikaverin and its derivatives on cells of certain tumors. Neoplasma 22:335–338
Giordano W, Domenech CE (1999) Aeration affects acetate destination in Gibberella fujikuroi. FEMS Microbiol Lett 180:111–116. https://doi.org/10.1016/S0378-1097(99)00471-1
Giordano W, Avalos J, Cerdá-Olmedo E, Domenech CE (1999) Nitrogen availability and production of bikaverin and gibberellins in Gibberella fujikuroi. FEMS Microbiol Lett 173:389–393. https://doi.org/10.1016/S0378-1097(99)00106-8
Gupta VK, Misra AK, Gaur RK (2010) Growth characteristics of Fusarium spp. causing wilt disease in Psidium guajava L. in India. J Plant Prot Res 50:452–462. https://doi.org/10.2478/v10045-010-0076-3
Haidar S, Aichele D, Birus R et al (2019) In vitro and in silico evaluation of bikaverin as a potent inhibitor of human protein kinase CK2. Molecules 24:1–16
Hertweck C (2009) The biosynthetic logic of polyketide diversity. Angew Chemie Int Ed 48:4688–4716. https://doi.org/10.1002/anie.200806121
Kongruang S (2011) Growth kinetics of biopigment production by Thai isolated Monascus purpureus in a stirred tank bioreactor. J Ind Microbiol Biotechnol 38:93–99. https://doi.org/10.1007/s10295-010-0834-2
Kwon HR, Son SW, Han HR et al (2007) Nematicidal activity of bikaverin and fusaric acid isolated from Fusarium oxysporum against pine wood nematode, Bursaphelenchus xylophilus. Plant Pathol J 23:318–321. https://doi.org/10.5423/PPJ.2007.23.4.318
Lale GJ, Gadre RV (2016) Production of bikaverin by a Fusarium fujikuroi mutant in submerged cultures. AMB Express 6:34. https://doi.org/10.1186/s13568-016-0205-0
Lamers PP, Janssen M, De Vos RCH et al (2008) Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications. Trends Biotechnol 26:631–638. https://doi.org/10.1016/j.tibtech.2008.07.002
Li E, Mira De Orduña R (2010) A rapid method for the determination of microbial biomass by dry weight using a moisture analyser with an infrared heating source and an analytical balance. Lett Appl Microbiol 50:283–288. https://doi.org/10.1111/j.1472-765X.2009.02789.x
Limón MC, Rodríguez-Ortiz R, Avalos J (2010) Bikaverin production and applications. Appl Microbiol Biotechnol 87:21–29. https://doi.org/10.1007/s00253-010-2551-1
Linnemannstöns P, Schulte J, Del Mar Prado M et al (2002) The polyketide synthase gene pks4 from Gibberella fujikuroi encodes a key enzyme in the biosynthesis of the red pigment bikaverin. Fungal Genet Biol 37:134–148. https://doi.org/10.1016/S1087-1845(02)00501-7
McInnes AG, Walter JA, Smith DG (1976) Biosynthesis of bikaverin in Fusarium oxysporum. J Antibiot (Tokyo) 29:1050–1057. https://doi.org/10.7164/antibiotics.29.1050
Medentsev AG, Akimenko VK (1998) Naphthoquinone metabolites of the fungi. Phytochemistry 47:935–959. https://doi.org/10.1016/S0031-9422(98)80053-8
Medentsev AG, Arinbasarova AY, Akimenko VK (2005) Biosynthesis of naphthoquinone pigments by fungi of the genus Fusarium. Appl Biochem Microbiol 41:573–577. https://doi.org/10.1007/s10438-005-0091-8
Norred W, Plattner R, Vesonder RF et al (1992) Effects of selected secondary metabolites of Fusarium moniliforme on unscheduled synthesis of DNA by rat primary hepatocytes. Food Chem Toxicol 30:233–237. https://doi.org/10.1016/0278-6915(92)90038-M
Ogbonna CN (2016) Production of food colourants by filamentous fungi. African J Microbiol Res 10:960–971. https://doi.org/10.5897/AJMR2016.7904
Pradeep FS, Pradeep BV (2013) Optimization of pigment and biomass production from Fusarium moniliforme under submerged fermentation conditions. Int J Pharm Pharm Sci 5:526–535
Rodríguez-Ortiz R, Mehta BJ, Avalos J, Limón MC (2010) Stimulation of bikaverin production by sucrose and by salt starvation in Fusarium fujikuroi. Appl Microbiol Biotechnol 85:1991–2000. https://doi.org/10.1007/s00253-009-2282-3
Saha P, Chowdhury S, Gupta S, Kumar I (2010) Insight into adsorption equilibrium, kinetics and thermodynamics of Malachite Green onto clayey soil of Indian origin. Chem Eng J 165:874–882. https://doi.org/10.1016/j.cej.2010.10.048
Silva WS (2013) Produção de pigmentos fúngico e seu uso no tingimento de tecidos. Dissertation, Federal University of São João Del-Rei
Sinha K, Das Saha P, Datta S (2012) Response surface optimization and artificial neural network modeling of microwave assisted natural dye extraction from pomegranate rind. Ind Crops Prod 37:408–414. https://doi.org/10.1016/j.indcrop.2011.12.032
Smith S, Tsai S-C (2007) The type I fatty acid and polyketide synthases: a tale of two megasynthases. Nat Prod Rep 24:1041. https://doi.org/10.1039/b603600g
Son SW, Kim HY, Choi GJ et al (2008) Bikaverin and fusaric acid from Fusarium oxysporum show antioomycete activity against Phytophthora infestans. J Appl Microbiol 104:692–698. https://doi.org/10.1111/j.1365-2672.2007.03581.x
Srivastava S, Sinha R, Roy D (2004) Toxicological effects of malachite green. Aquat Toxicol 66:319–329. https://doi.org/10.1016/j.aquatox.2003.09.008
Srivastava P, Srivastava S, Pathak N (2011) Identification of limiting factors for the optimum growth of Fusarium oxysporum in liquid medium. Toxicol Int 18:111–116. https://doi.org/10.4103/0971-6580.84262
Stahmann KP, Arst HN, Althöfer H et al (2001) Riboflavin, overproduced during sporulation of Ashbya gossypii, protects its hyaline spores against ultraviolet light. Environ Microbiol 3:545–550. https://doi.org/10.1046/j.1462-2920.2001.00225.x
Wiemann P, Willmann A, Straeten M et al (2009) Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function and regulation. Mol Microbiol 72:931–946. https://doi.org/10.1111/j.1365-2958.2009.06695.x
Yolmeh M, Habibi Najafi MB, Farhoosh R (2014) Optimisation of ultrasound-assisted extraction of natural pigment from annatto seeds by response surface methodology (RSM). Food Chem 155:319–324. https://doi.org/10.1016/j.foodchem.2014.01.059