Mô hình hóa sản xuất bikaverin bởi Fusarium oxysporum CCT7620 trong các nền văn hóa bình lắc

Bioresources and Bioprocessing - Tập 7 Số 1 - 2020
Marcela Colombo dos Santos1, Mayra de Lima Mendonça1, Juliano Lemos Bicas1
1Departamento de Ciência de Alimentos, Universidade Estadual de Campinas, Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil

Tóm tắt

Tóm tắtBikaverin là một thuốc nhuộm màu đỏ từ nấm với các hoạt tính kháng khuẩn và chống u. Do đó, chất này có thể được sử dụng như một phụ gia thay thế trong ngành thực phẩm và dược phẩm. Mục tiêu của nghiên cứu này là sử dụng phương pháp bề mặt phản hồi để tối ưu hóa các điều kiện lên men và tối đa hóa sản xuất bikaverin trong các bình lắc. Các biến số được điều tra bao gồm tốc độ khuấy (71–289 vòng/phút), nhiệt độ (21–35 °C) và nồng độ chất nền (gạo) trong môi trường văn hóa (16.4–83.6 g/L). Tốc độ khuấy có tác động tích cực đến sản xuất thuốc nhuộm màu đỏ, trong khi nồng độ chất nền và nhiệt độ có tác động ngược lại. Sản xuất bikaverin tối đa được dự đoán sẽ xảy ra ở tốc độ 289 vòng/phút, nhiệt độ 24.3 °C và nồng độ gạo 16.4 g/L. Việc xác nhận thực nghiệm với tốc độ 289 vòng/phút, 28 °C và nồng độ gạo 20 g/L cho kết quả cao hơn 6.2% so với dự đoán của mô hình. Nghiên cứu này có tầm quan trọng trong việc xác định các điều kiện tốt nhất cho sản xuất bikaverin.

Từ khóa


Tài liệu tham khảo

Ahmad MN, Holland CR, Mckay G (1994) Mass transfer studies in batch fermentation: mixing characteristics. J Food Eng 23:145–158. https://doi.org/10.1016/0260-8774(94)90083-3

Akilandeswari P, Pradeep BV (2016) Exploration of industrially important pigments from soil fungi. Appl Microbiol Biotechnol 100:1631–1643. https://doi.org/10.1007/s00253-015-7231-8

Avalos J, Fernández-Martín R, Prado MM et al (1999) Biosíntesis de giberelinas, bikaverina y carotenoides en Gibberella fujikuroi. In: López C, Alonso JE (eds) Biotecnología y aplicaciones de microorganismos pigmentados. Universidade da Coruña, Coruña, pp 169–188

Balan J, Fuska J, Kuhr I, Kuhrová V (1970) Bikaverin, an antibiotic from Gibberella fujikuroi, effective against Leishmania brasiliensis. Folia Microbiol (Praha) 15:479–484. https://doi.org/10.1007/BF02880192

Bell AA, Wheeler MH, Liu J et al (2003) United States department of agriculture—agricultural research service studies on polyketide toxins of Fusarium oxysporum f sp vasinfectum: potential targets for disease control. Pest Manag Sci 59:736–747. https://doi.org/10.1002/ps.713

Brewer D, Arsenault GP (1973) Production of bikaverin by Fusarium oxysporum and its identity with lycopersin. J Antibiot Antibiot 26:778–781. https://doi.org/10.7164/antibiotics.26.778

Chávez-Parga MDC, González-Ortega O, Sánchez-Cornejo G et al (2005) Mathematical description of bikaverin production in a fluidized bed bioreactor. World J Microbiol Biotechnol 21:683–688. https://doi.org/10.1007/s11274-004-3854-0

Cornforth W, Robinson PM, Ireland N (1971) Isolation and characterization of a fungal vacuolation factor (bikaverin). J Chem Soc 16:2786–2788. https://doi.org/10.1039/J39710002786

Deshmukh R, Mathew A, Purohit HJ (2014) Characterization of antibacterial activity of bikaverin from Fusarium sp. HKF15. J Biosci Bioeng 117:443–448. https://doi.org/10.1016/j.jbiosc.2013.09.017

Dufossé L, Galaup P, Yaron A et al (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci Technol 16:389–406. https://doi.org/10.1016/j.tifs.2005.02.006

Escamilla-Silva E, Poggi-Varaldo H, Mayra M et al (2001) Selective production of bikaverin in a fluidized bioreactor with immobilized Gibberella fujikuroi. World J Microbiol Biotechnol 17:469–474. https://doi.org/10.1023/A:1011913316988

Fuska J, Proksa B, Fuskova A (1975) New potential cytotoxic and antitumor substances. I. In vitro effect of bikaverin and its derivatives on cells of certain tumors. Neoplasma 22:335–338

Giordano W, Domenech CE (1999) Aeration affects acetate destination in Gibberella fujikuroi. FEMS Microbiol Lett 180:111–116. https://doi.org/10.1016/S0378-1097(99)00471-1

Giordano W, Avalos J, Cerdá-Olmedo E, Domenech CE (1999) Nitrogen availability and production of bikaverin and gibberellins in Gibberella fujikuroi. FEMS Microbiol Lett 173:389–393. https://doi.org/10.1016/S0378-1097(99)00106-8

Gupta VK, Misra AK, Gaur RK (2010) Growth characteristics of Fusarium spp. causing wilt disease in Psidium guajava L. in India. J Plant Prot Res 50:452–462. https://doi.org/10.2478/v10045-010-0076-3

Haidar S, Aichele D, Birus R et al (2019) In vitro and in silico evaluation of bikaverin as a potent inhibitor of human protein kinase CK2. Molecules 24:1–16

Hertweck C (2009) The biosynthetic logic of polyketide diversity. Angew Chemie Int Ed 48:4688–4716. https://doi.org/10.1002/anie.200806121

Kongruang S (2011) Growth kinetics of biopigment production by Thai isolated Monascus purpureus in a stirred tank bioreactor. J Ind Microbiol Biotechnol 38:93–99. https://doi.org/10.1007/s10295-010-0834-2

Kwon HR, Son SW, Han HR et al (2007) Nematicidal activity of bikaverin and fusaric acid isolated from Fusarium oxysporum against pine wood nematode, Bursaphelenchus xylophilus. Plant Pathol J 23:318–321. https://doi.org/10.5423/PPJ.2007.23.4.318

Lale GJ, Gadre RV (2016) Production of bikaverin by a Fusarium fujikuroi mutant in submerged cultures. AMB Express 6:34. https://doi.org/10.1186/s13568-016-0205-0

Lamers PP, Janssen M, De Vos RCH et al (2008) Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications. Trends Biotechnol 26:631–638. https://doi.org/10.1016/j.tibtech.2008.07.002

Li E, Mira De Orduña R (2010) A rapid method for the determination of microbial biomass by dry weight using a moisture analyser with an infrared heating source and an analytical balance. Lett Appl Microbiol 50:283–288. https://doi.org/10.1111/j.1472-765X.2009.02789.x

Limón MC, Rodríguez-Ortiz R, Avalos J (2010) Bikaverin production and applications. Appl Microbiol Biotechnol 87:21–29. https://doi.org/10.1007/s00253-010-2551-1

Linnemannstöns P, Schulte J, Del Mar Prado M et al (2002) The polyketide synthase gene pks4 from Gibberella fujikuroi encodes a key enzyme in the biosynthesis of the red pigment bikaverin. Fungal Genet Biol 37:134–148. https://doi.org/10.1016/S1087-1845(02)00501-7

McInnes AG, Walter JA, Smith DG (1976) Biosynthesis of bikaverin in Fusarium oxysporum. J Antibiot (Tokyo) 29:1050–1057. https://doi.org/10.7164/antibiotics.29.1050

Medentsev AG, Akimenko VK (1998) Naphthoquinone metabolites of the fungi. Phytochemistry 47:935–959. https://doi.org/10.1016/S0031-9422(98)80053-8

Medentsev AG, Arinbasarova AY, Akimenko VK (2005) Biosynthesis of naphthoquinone pigments by fungi of the genus Fusarium. Appl Biochem Microbiol 41:573–577. https://doi.org/10.1007/s10438-005-0091-8

Norred W, Plattner R, Vesonder RF et al (1992) Effects of selected secondary metabolites of Fusarium moniliforme on unscheduled synthesis of DNA by rat primary hepatocytes. Food Chem Toxicol 30:233–237. https://doi.org/10.1016/0278-6915(92)90038-M

Ogbonna CN (2016) Production of food colourants by filamentous fungi. African J Microbiol Res 10:960–971. https://doi.org/10.5897/AJMR2016.7904

Pradeep FS, Pradeep BV (2013) Optimization of pigment and biomass production from Fusarium moniliforme under submerged fermentation conditions. Int J Pharm Pharm Sci 5:526–535

Rodríguez-Ortiz R, Mehta BJ, Avalos J, Limón MC (2010) Stimulation of bikaverin production by sucrose and by salt starvation in Fusarium fujikuroi. Appl Microbiol Biotechnol 85:1991–2000. https://doi.org/10.1007/s00253-009-2282-3

Saha P, Chowdhury S, Gupta S, Kumar I (2010) Insight into adsorption equilibrium, kinetics and thermodynamics of Malachite Green onto clayey soil of Indian origin. Chem Eng J 165:874–882. https://doi.org/10.1016/j.cej.2010.10.048

Silva WS (2013) Produção de pigmentos fúngico e seu uso no tingimento de tecidos. Dissertation, Federal University of São João Del-Rei

Sinha K, Das Saha P, Datta S (2012) Response surface optimization and artificial neural network modeling of microwave assisted natural dye extraction from pomegranate rind. Ind Crops Prod 37:408–414. https://doi.org/10.1016/j.indcrop.2011.12.032

Smith S, Tsai S-C (2007) The type I fatty acid and polyketide synthases: a tale of two megasynthases. Nat Prod Rep 24:1041. https://doi.org/10.1039/b603600g

Son SW, Kim HY, Choi GJ et al (2008) Bikaverin and fusaric acid from Fusarium oxysporum show antioomycete activity against Phytophthora infestans. J Appl Microbiol 104:692–698. https://doi.org/10.1111/j.1365-2672.2007.03581.x

Srivastava S, Sinha R, Roy D (2004) Toxicological effects of malachite green. Aquat Toxicol 66:319–329. https://doi.org/10.1016/j.aquatox.2003.09.008

Srivastava P, Srivastava S, Pathak N (2011) Identification of limiting factors for the optimum growth of Fusarium oxysporum in liquid medium. Toxicol Int 18:111–116. https://doi.org/10.4103/0971-6580.84262

Stahmann KP, Arst HN, Althöfer H et al (2001) Riboflavin, overproduced during sporulation of Ashbya gossypii, protects its hyaline spores against ultraviolet light. Environ Microbiol 3:545–550. https://doi.org/10.1046/j.1462-2920.2001.00225.x

Wiemann P, Willmann A, Straeten M et al (2009) Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function and regulation. Mol Microbiol 72:931–946. https://doi.org/10.1111/j.1365-2958.2009.06695.x

Yolmeh M, Habibi Najafi MB, Farhoosh R (2014) Optimisation of ultrasound-assisted extraction of natural pigment from annatto seeds by response surface methodology (RSM). Food Chem 155:319–324. https://doi.org/10.1016/j.foodchem.2014.01.059

Zhan J, Burns AM, Liu MX et al (2007) Search for cell motility and angiogenesis inhibitors with potential anticancer activity: beauvericin and other constituents of two endophytic strains of Fusarium oxysporum. J Nat Prod 70:227–232. https://doi.org/10.1021/np060394t