Modeling and simulations of the Marangoni effect in phase change materials embedded in metallic foams

Applied Thermal Engineering - Tập 219 - Trang 119413 - 2023
Santiago Madruga1
1Departamento de Matemática Aplicada a la Ingeniería Aeroespacial, ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid (UPM), Plaza Cardenal Cisneros 3, 28040 Madrid, Spain

Tài liệu tham khảo

Telkes, 1949, Storing solar heat in chemicals, Heat. Vent., 46, 80 Yan, 2020, Energy efficiency optimization of the waste heat recovery system with embedded phase change materials in greenhouses: A thermo-economic-environmental study, J. Energy Storage, 30, 10.1016/j.est.2020.101445 Raul, 2018, Modelling and experimental study of latent heat thermal energy storage with encapsulated PCMs for solar thermal applications, Appl. Therm. Eng., 143, 415, 10.1016/j.applthermaleng.2018.07.123 Rodriguez-Ubinas, 2012, Applications of phase change material in highly energy-efficient houses, Energy Build., 50, 49, 10.1016/j.enbuild.2012.03.018 Prajapati, 2020, A review on polymeric-based phase change material for thermo-regulating fabric application, Polym. Rev., 60, 389, 10.1080/15583724.2019.1677709 Alehosseini, 2019, Micro/nano-encapsulated phase change materials (PCMs) as emerging materials for the food industry, Trends Food Sci. Technol., 91, 116, 10.1016/j.tifs.2019.07.003 Madruga, 2019, Thermoelectric energy harvesting in aircraft with porous phase change materials, IOP Conf. Ser. Earth Environ. Sci., 354, 10.1088/1755-1315/354/1/012123 Madruga, 2022, Introducing a new concept for enhanced micro-energy harvesting of thermal fluctuations through the Marangoni effect, Appl. Energy, 306, 10.1016/j.apenergy.2021.117966 Kim, 2014, Heat transfer analysis of a latent heat thermal energy storage system using graphite foam for concentrated solar power, Sol. Energy, 103, 438, 10.1016/j.solener.2014.02.038 Saedodin, 2017, Performance evaluation of a flat-plate solar collector filled with porous metal foam: Experimental and numerical analysis, Energy Convers. Manage., 153, 278, 10.1016/j.enconman.2017.09.072 Zhao, 2014, Experimental evaluation of a prototype thermoelectric system integrated with PCM (phase change material) for space cooling, Energy, 68, 658, 10.1016/j.energy.2014.01.090 Jaworski, 2016, Experimental investigation of thermoelectric generator (TEG) with PCM module, Appl. Therm. Eng., 96, 527, 10.1016/j.applthermaleng.2015.12.005 Cui, 2016, Design of a novel concentrating photovoltaic-thermoelectric system incorporated with phase change materials, Energy Convers. Manage., 112, 49, 10.1016/j.enconman.2016.01.008 Madruga, 2021, Efficient thermoelectric transformation of daily thermal fluctuations into electricity, IOP Conf. Ser. Earth Environ. Sci., 701, 10.1088/1755-1315/701/1/012082 Madruga, 2021, Modeling of enhanced micro-energy harvesting of thermal ambient fluctuations with metallic foams embedded in phase change materials, Renew. Energy, 168, 424, 10.1016/j.renene.2020.12.041 Saha, 2010, Heat transfer correlations for PCM-based heat sinks with plate fins, Appl. Therm. Eng., 30, 2485, 10.1016/j.applthermaleng.2010.06.021 Nakagawa, 2019, A highly efficient thermoelectric module with heat storage utilizing sensible heat for IoT power supply, J. Electron. Mater., 48, 1939, 10.1007/s11664-018-06837-5 Karthick, 2019, Experimental investigation of solar reversible power generation in thermoelectric generator (TEG) using thermal energy storage, Energy Sustain. Dev., 48, 107, 10.1016/j.esd.2018.11.002 Bianco, 2021, Finned heat sinks with phase change materials and metal foams: Pareto optimization to address cost and operation time, Appl. Therm. Eng., 197, 10.1016/j.applthermaleng.2021.117436 Tu, 2017, A novel thermoelectric harvester based on high-performance phase change material for space application, Appl. Energy, 206, 1194, 10.1016/j.apenergy.2017.10.030 Xiong, 2020, Nano-enhanced phase change materials (NePCMs): A review of numerical simulations, Appl. Therm. Eng., 178 Nižetić, 2020, Nano-enhanced phase change materials and fluids in energy applications: A review, Renew. Sustain. Energy Rev., 129, 10.1016/j.rser.2020.109931 Kumar, 2016, Energy and exergy analyses of medium temperature latent heat thermal storage with high porosity metal matrix, Appl. Therm. Eng., 109, 911, 10.1016/j.applthermaleng.2016.04.161 Sarabandi, 2019, AC derived from pine cone as a framework for the preparation of n-heptadecane nanocomposite for thermal energy storage, J. Energy Storage, 24 ur Rehman, 2019, A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams, Int. J. Heat Mass Transfer, 135, 649, 10.1016/j.ijheatmasstransfer.2019.02.001 Liu, 2020, A review of numerical modelling of high-temperature phase change material composites for solar thermal energy storage, J. Energy Storage, 29 Diani, 2021, Melting of PCMs embedded in copper foams: An experimental study, Materials, 14, 1195, 10.3390/ma14051195 Chen, 2021, Thermal storage analysis of a foam-filled PCM heat exchanger subjected to fluctuating flow conditions, Energy, 216, 10.1016/j.energy.2020.119259 Krishnan, 2005, A two-temperature model for solid-liquid phase change in metal foams, J. Heat Transfer, 127, 995, 10.1115/1.2010494 Krishnan, 2007, Analysis of solid-liquid phase change under pulsed heating, J. Heat Transfer, 129, 395, 10.1115/1.2430728 Yang, 2010, Melting of phase change materials with volume change in metal foams, J. Heat Transfer, 132, 1, 10.1115/1.4000747 Feng, 2015, Pore-scale and volume-averaged numerical simulations of melting phase change heat transfer in finned metal foam, Int. J. Heat Mass Transfer, 90, 838, 10.1016/j.ijheatmasstransfer.2015.06.088 Yang, 2018, Thermal and economic analysis of charging and discharging characteristics of composite phase change materials for cold storage, Appl. Energy, 225, 585, 10.1016/j.apenergy.2018.05.063 Yang, 2018, Comparison of direct numerical simulation with volume-averaged method on composite phase change materials for thermal energy storage, Appl. Energy, 229, 700, 10.1016/j.apenergy.2018.08.012 Mohamed Moussa, 2019, A numerical investigation of the effects of metal foam characteristics and heating/cooling conditions on the phase change kinetic of phase change materials embedded in metal foam, J. Energy Storage, 26 Buonomo, 2019, Numerical study on latent thermal energy storage systems with aluminum foam in local thermal equilibrium, Appl. Therm. Eng., 159 Zhang, 2021, Three-dimensional numerical investigation on melting performance of phase change material composited with copper foam in local thermal non-equilibrium containing an internal heater, Int. J. Heat Mass Transfer, 170, 10.1016/j.ijheatmasstransfer.2021.121021 Ghahremannezhad, 2020, Thermal performance analysis of phase change materials (PCMs) embedded in gradient porous metal foams, Appl. Therm. Eng., 179 Beckermann, 1988, Natural convection solid/liquid phase change in porous media, Int. J. Heat Mass Transfer, 31, 35, 10.1016/0017-9310(88)90220-7 Cui, 2012, Experimental investigation on the heat charging process by paraffin filled with high porosity copper foam, Appl. Therm. Eng., 39, 26, 10.1016/j.applthermaleng.2012.01.037 Zhu, 2020, Experimental and numerical investigation of the melting process of aluminum foam/paraffin composite with low porosity, Numer. Heat Transfer A, 77, 998, 10.1080/10407782.2020.1747289 Ferfera, 2020, Thermal characterization of a heat exchanger equipped with a combined material of phase change material and metallic foams, Int. J. Heat Mass Transfer, 148, 10.1016/j.ijheatmasstransfer.2019.119162 Yang, 2017, The role of porous metal foam on the unidirectional solidification of saturating fluid for cold storage, Appl. Energy, 194, 508, 10.1016/j.apenergy.2016.09.050 Li, 2014, Numerical study on the thermal behavior of phase change materials (PCMs) embedded in porous metal matrix, Sol. Energy, 99, 172, 10.1016/j.solener.2013.11.017 Fixler, 1966, Satellite thermal control using phase-change materials, J. Spacecr. Rockets, 3, 1362, 10.2514/3.28661 Ibrahim, 2000, Experimental and computational investigations of phase change thermal energy storage canisters, J. Sol. Energy Eng., 122, 176, 10.1115/1.1330726 Blackwood, 2006, Design of thermal initial and boundary conditions to control the expansion of water-based phase-change materials in low gravity, Numer. Heat Transfer A, 49, 525, 10.1080/10407780500436907 Reid, 2013, Computational evaluation of a latent heat energy storage system, Sol. Energy, 95, 99, 10.1016/j.solener.2013.06.010 Li, 2018, Pore-scale investigation of gravity effects on phase change heat transfer characteristics using lattice Boltzmann method, Appl. Energy, 222, 92, 10.1016/j.apenergy.2018.03.184 Li, 2019, Effect of supergravity on heat transfer characteristics of PCM with the pore-scale lattice Boltzmann method, Energy Procedia, 158, 4641, 10.1016/j.egypro.2019.01.742 Iasiello, 2020, Simulations of paraffine melting inside metal foams at different gravity levels with preliminary experimental validation, J. Phys. Conf. Ser., 1599, 10.1088/1742-6596/1599/1/012008 Madruga, 2017, Heat transfer performance and melting dynamic of a phase change material subjected to thermocapillary effects, Int. J. Heat Mass Transfer, 109, 501, 10.1016/j.ijheatmasstransfer.2017.02.025 Madruga, 2017, Enhancement of heat transfer rate on phase change materials with thermocapillary flows, Eur. Phys. J. Special Top., 226, 1169, 10.1140/epjst/e2016-60207-7 Madruga, 2020, Scaling laws during melting driven by thermocapillarity, Int. J. Heat Mass Transfer, 163, 10.1016/j.ijheatmasstransfer.2020.120462 Madruga, 2021, Heat transfer performance and thermal energy storage in nano-enhanced phase change materials driven by thermocapillarity, Int. Commun. Heat Mass Transfer, 129, 10.1016/j.icheatmasstransfer.2021.105672 Salgado Sánchez, 2020, Thermocapillary effects during the melting of phase change materials in microgravity: Heat transport enhancement, Int. J. Heat Mass Transfer, 163, 10.1016/j.ijheatmasstransfer.2020.120478 Peng, 2021, Melting behavior and heat transfer performance of gallium for spacecraft thermal energy storage application, Energy, 228, 10.1016/j.energy.2021.120575 Borshchak Kachalov, 2021, The combined effect of natural and thermocapillary convection on the melting of phase change materials in rectangular containers, Int. J. Heat Mass Transfer, 168, 10.1016/j.ijheatmasstransfer.2020.120864 Sedeh, 2014, Solidification of phase change materials infiltrated in porous media in presence of voids, J. Heat Transfer, 136, 1 Bejan, 2013 Madruga, 2021, Effect of the inclination angle on the transient melting dynamics and heat transfer of a phase change material, Phys. Fluids, 33, 10.1063/5.0047367 Beckermann, 1988, Natural convection solid/liquid phase change in porous media, Int. J. Heat Mass Transfer, 31, 35, 10.1016/0017-9310(88)90220-7 Madruga, 2017, Melting dynamics of a phase change material (PCM) with dispersed metallic nanoparticles using transport coefficients from empirical and mean field models, Appl. Therm. Eng., 124, 1123, 10.1016/j.applthermaleng.2017.06.097 Bhattacharya, 2002, Thermophysical properties of high porosity metal foams, Int. J. Heat Mass Transfer, 45, 1017, 10.1016/S0017-9310(01)00220-4 Singh, 2004, Computational aspects of effective thermal conductivity of highly porous metal foams, Appl. Therm. Eng., 24, 1841, 10.1016/j.applthermaleng.2003.12.011 Yang, 2014, An analytical unit cell model for the effective thermal conductivity of high porosity open-cell metal foams, Transp. Porous Media, 102, 403, 10.1007/s11242-014-0281-z Calmidi, 2000, Forced convection in high porosity metal foams, J. Heat Transfer, 122, 557, 10.1115/1.1287793 Tiari, 2020, Computational study of a latent heat thermal energy storage system enhanced by highly conductive metal foams and heat pipes, J. Therm. Anal. Calorim., 141, 1741, 10.1007/s10973-020-09357-9 El Idi, 2020, Heating and cooling conditions effects on the kinetic of phase change of PCM embedded in metal foam, Case Stud. Therm. Eng., 21, 10.1016/j.csite.2020.100716 Zhuang, 2022, Numerical investigation on non-Newtonian melting heat transfer of phase change material composited with nanoparticles and metal foam in an inner heated cubic cavity, J. Energy Storage, 51, 10.1016/j.est.2022.104417 Hennenberg, 1997, Porous media and the Bénard-Marangoni problem, Transp. Porous Media, 27, 327, 10.1023/A:1006564129233 Saghir, 1998, Marangoni convection in a square porous cavity, Int. J. Comput. Fluid Dyn., 9, 111, 10.1080/10618569808940845 Ho, 2009, Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material, Int. Commun. Heat Mass Transfer, 36, 467, 10.1016/j.icheatmasstransfer.2009.01.015 Alawadhi, 2008, Thermal analysis of a building brick containing phase change material, Energy Build., 40, 351, 10.1016/j.enbuild.2007.03.001 Lide, 2000 Wang, 2019, Numerical simulation of effective thermal conductivity and pore-scale melting process of PCMs in foam metals, Appl. Therm. Eng., 147, 464, 10.1016/j.applthermaleng.2018.10.106 Brent, 1988, Enthalpy-porosity technique for modelling convection-diffusion phase change: Application to the melting of a pure metal, Numer. Heat Transfer, 13, 297, 10.1080/10407788808913615 Voller, 1991, General source–based method for solidification phase change, Numer. Heat Transfer B, 19, 175, 10.1080/10407799108944962 Madruga, 2018, Experimental and numerical study of melting of the phase change material tetracosane, Int. Commun. Heat Mass, 98, 163, 10.1016/j.icheatmasstransfer.2018.08.021 Madruga, 2018, Dynamic of plumes and scaling during the melting of a phase change material heated from below, Int. J. Heat Mass Transfer, 126, Part B, 206, 10.1016/j.ijheatmasstransfer.2018.05.075 Zeng, 2006, A criterion for non-Darcy flow in porous media, Transp. Porous Media, 63, 57, 10.1007/s11242-005-2720-3 Kumar, 2017, Predicting pressure drop in open-cell foams by adopting Forchheimer number, Int. J. Multiph. Flow, 94, 123, 10.1016/j.ijmultiphaseflow.2017.04.010 Zhang, 2013, Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures, J. Hydrol., 477, 139, 10.1016/j.jhydrol.2012.11.024 Zhou, 2015, Nonlinear flow behavior at low Reynolds numbers through rough-walled fractures subjected to normal compressive loading, Int. J. Rock Mech. Min. Sci., 80, 202, 10.1016/j.ijrmms.2015.09.027 Chen, 2020, Non-Darcian flow effect on discharge into a tunnel in karst aquifers, Int. J. Rock Mech. Min. Sci., 130 Xing, 2021, Characterizing the scaling coefficient ω between viscous and inertial permeability of fractures, J. Hydrol., 593