Modeling and simulation of carbon nanotube amino-acid sensor: A first-principles study
Tài liệu tham khảo
Shah, 2016, Computational comparative study of substitutional, endo and exo BN Co-Doped single walled carbon nanotube system, Superlattices Microstruct., 93, 234, 10.1016/j.spmi.2016.03.012
Shah, 2016, Negative differential resistance in BN co-doped coaxial carbon nanotube field effect transistor, Superlattices Microstruct., 100, 375, 10.1016/j.spmi.2016.09.037
Novak, 2003, Nerve agent detection using networks of single-walled carbon nanotubes, Appl. Phys. Lett., 10.1063/1.1626265
Malcioǧlu, 2008, Functionality of C(4,4) carbon nanotube as molecular detector, J. Nanosci. Nanotechnol.
Ferry, 2009, Transport in Nanostructures, 10.1017/CBO9780511840463
Datta, 2005
Ebert, 1997, Science of fullerenes and carbon nanotubes, Carbon N. Y., 10.1016/S0008-6223(97)89618-2
Ebbesen, 1996
Dresselhaus, 1998, Carbon nanotubes, Phys. World, 11, 33, 10.1088/2058-7058/11/1/32
Lu, 1998, Carbon nanotubes and nanotube-based nano devices, Int. J. High Speed Electron. Syst., 9, 101, 10.1142/S0129156498000063
Dillon, 1997, Storage of hydrogen in single-walled carbon nanotubes, Nature, 10.1038/386377a0
Chen, 1999, High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures, Science, 80-
Ye, 1999, Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes, Appl. Phys. Lett., 10.1063/1.123833
Liu, 1999, Hydrogen storage in single-walled carbon nanotubes at room temperature, Science, 80-
Wang, 1999, Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores, J. Chem. Phys., 10.1063/1.478114
Kong, 2000, Nanotube molecular wires as chemical sensors, Science, 80-
Zettl, 2000, Extreme oxygen sensitivity of electronic properties of carbon nanotubes, Science, 80-
Tang, 2000, Electronic structures of single-walled carbon nanotubes determined by NMR, Science, 80-
Sumanasekera, 2000, Effects of gas adsorption and collisions on electrical transport in single-walled carbon nanotubes, Phys. Rev. Lett., 10.1103/PhysRevLett.85.1096
Dean, 1999, The environmental stability of field emission from single-walled carbon nanotubes, Appl. Phys. Lett., 10.1063/1.125219
Wadhawan, 2001, Effects of Cs deposition on the field-emission properties of single-walled carbon nanotube bundles, Appl. Phys. Lett.
Jhi, 2000, Electronic properties of oxidized carbon nanotubes, Phys. Rev. Lett., 10.1103/PhysRevLett.85.1710
Tanaka, 2002, Methane adsorption on single-walled carbon nanotube: A density functional theory model, Chem. Phys. Lett., 10.1016/S0009-2614(01)01486-5
Peng, 2000, Chemical control of nanotube electronics, Nanotechnology., 10.1088/0957-4484/11/2/303
Guo, 2008, Conductivity of a single DNA duplex bridging a carbon nanotube gap, Nat. Nanotechnol., 10.1038/nnano.2008.4
Goldsmith, 2008, Monitoring single-molecule reactivity on a carbon nanotube, Nano Lett., 10.1021/nl0724079
Sorgenfrei, 2011, Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor, Nat. Nanotechnol., 10.1038/nnano.2010.275
Vernick, 2017, Electrostatic melting in a single-molecule field-effect transistor with applications in genomic identification, Nat. Commun., 10.1038/ncomms15450
Shim, 2007, Synchronized oscillation in coupled nanomechanical oscillators, Science, 80-
Chaste, 2012, A nanomechanical mass sensor with yoctogram resolution, Nat. Nanotechnol., 10.1038/nnano.2012.42
Lee, 2010, Coherence resonance in a single-walled carbon nanotube ion channel, Science, 80-
Peng, 2018, Detection of Individual Molecules and Ions by Carbon Nanotube-Based Differential Resistive Pulse Sensor, Small., 10.1002/smll.201800013
Feldman, 2008, Molecular electronic devices based on single-walled carbon nanotube electrodes, Acc. Chem. Res., 10.1021/ar8000266
Allen, 2007, Carbon nanotube field-effect-transistor-based biosensors, Adv. Mater., 10.1002/adma.200602043
G.O. Silva, Z.P. Michael, L. Bian, G.V. Shurin, M. Mulato, M.R. Shurin, A. Star, Nanoelectronic Discrimination of Nonmalignant and Malignant Cells Using Nanotube Field-Effect Transistors,ACS sensors2:1128–1132.
Alabsi, 2020, A Review of Carbon Nanotubes Field Effect-Based Biosensors, IEEE Access, 8, 69509, 10.1109/ACCESS.2020.2987204
Star, 2006, Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors, Proc. Natl. Acad. Sci. U. S. A., 10.1073/pnas.0504146103
Martínez, 2009, Label-Free DNA Biosensors Based on Functionalized Carbon Nanotube Field Effect Transistors, Nano Lett., 10.1021/nl8025604
Almuqrin, 2021, DFT computational study towards investigating psychotropic drugs, promazine and trifluoperazine adsorption on graphene, fullerene and carbon cyclic ring nanoclusters, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 246, 10.1016/j.saa.2020.119012
del Castello, 2021, Interaction of graphene with antipsychotic drugs: Is there any charge transfer process?, J Comput Chem, 42, 60, 10.1002/jcc.26433
Jauris, 2016, Adsorption of sodium diclofenac on graphene: a combined experimental and theoretical study, Phys. Chem., 18, 1526
Shukla, 2020, A reduced-graphene oxide-modified microelectrode for a repeatable detection of antipsychotic clozapine using microliters-volumes of whole blood, Talanta, 209, 10.1016/j.talanta.2019.120560
Saeedimasine, 2021, Atomistic Perspective on Biomolecular Adsorption on Functionalized Carbon Nanomaterials under Ambient Conditions, J. Phys. Chem. B, 125, 416, 10.1021/acs.jpcb.0c08622
Pinals, 2021, Rapid SARS-CoV-2 Spike Protein Detection by Carbon Nanotube-Based Near-Infrared Nanosensors, Nano Lett., 21, 2272, 10.1021/acs.nanolett.1c00118
Eldin, 2021, Dielectric modulated CNT TFET based label-free biosensor: design and performance analysis, Semicond. Sci. Technol.
QuantumATK, P-2019.03, Synopsys QuantumATK (https://www.synopsys.com/silicon/quantumatk.html).
Tersoff, 1988, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B., 10.1103/PhysRevB.37.6991
Zeng, 2011, Graphene-based spin caloritronics, Nano Lett.
Martín-Martínez, 2012, Chem. Eur. J., 18, 6183, 10.1002/chem.201103977
Martin-Martinez, 2011, Edge effects, electronic arrangement, and aromaticity patterns on finite-length carbon nanotubes, Phys. Chem. Chem. Phys., 13, 12844, 10.1039/c1cp20672a