Mô hình hóa và hiện thực hóa cảm biến sinh học quang học để phát hiện virus nguy hiểm sử dụng phương pháp machine learning

S. Vishalatchi1, Kalpana Murugan1, Nagaraj Ramrao2, Preeta Sharan3
1Department of Electronics and Communication Engineering, Kalasalingam Academy of Research and Education, Srivilliputhur, India
2Mohan Babu University, Tirupati, India
3Department of Electronics and Communication Engineering, The Oxford College of Engineering, Bengaluru, India

Tóm tắt

Danh mục rộng các virus lây truyền qua đường tình dục là những nhiễm trùng thường đạt được thông qua tiếp xúc tình dục không rõ ràng và có thể dẫn đến các biến chứng sức khỏe nghiêm trọng hoặc có thể gây tử vong nếu không được chẩn đoán sớm. Trong nghiên cứu này, một cảm biến sinh học dựa trên cấu trúc tinh thể photon hai chiều (2D) được đề xuất và tích hợp với các chỉ số hiệu suất của Machine Learning. Nền tảng cảm biến quang học dựa trên tinh thể photon 2D tạo ra một đầu ra kiểu mô phỏng. Hành vi quang phổ đầu ra thay đổi theo loại virus được phát hiện. Để tính toán độ chính xác, dữ liệu chữ ký được đào tạo và kiểm tra bằng thuật toán Machine Learning (ML), k-Nearest Neighbors (kNN). Cấu trúc Giao thoa kế Mach-Zehnder Đã chỉnh sửa (MMZI) thể hiện tính mới của công trình bằng cách đạt được độ nhạy cao và hệ số chất lượng lần lượt là 998 nm và 3988 so với các công trình hiện có. Báo cáo phân loại được tạo ra và cho thấy độ chính xác cao đạt 97,12%. Cuối cùng, Giao diện người dùng đồ họa (GUI) đã được hoàn thiện để cải thiện khả năng đọc của các kết quả thu được.

Từ khóa

#virus lây truyền qua đường tình dục #cảm biến sinh học #cấu trúc tinh thể photon #machine learning #k-Nearest Neighbors #Giao thoa kế Mach-Zehnder

Tài liệu tham khảo

K.M. Kreisel et al., Sexually transmitted infections among us women and men: prevalence and incidence estimates, 2018. J. Sex. Trans. Dis. 48, 208–214 (2021). https://doi.org/10.1097/OLQ.0000000000001355 G. McQuillan, et al. Prevalence of Herpes Simplex Virus Type 1 and Type 2 in Persons Aged 14–49: United States, NCHS Data Brief, no. 304, Feb., pp. 1–8 ( 2018 ) Photonic Crystals. 2008. press.princeton.edu, https://press.princeton.edu/books/hardcover/9780691124568/photonic-crystals. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58(20), 2059–2062 (1987). https://doi.org/10.1103/PhysRevLett.58.2059 S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58(23), 2486–2489 (1987). https://doi.org/10.1103/PhysRevLett.58.2486 T. Sreenivasulu et al. “Photonic Crystal Ring Resonator Based Force Sensor: Design and Analysis.” , (2018). www.semanticscholar.org, https://www.semanticscholar.org/paper/Photonic-crystal-ring-resonator-based-force-sensor%3A-Sreenivasulu-Rao/71bc67cca4b97a1e049b3511613dbd310c25651c. M. Radhouene, M.K. Chhipa, S. Monia Najjar, B.S. Robinson, Novel design of ring resonator based temperature sensor using photonics technology. Photon. Sens. 7(4), 311–316 (2017). https://doi.org/10.1007/s13320-017-0443-z G. Rajalakshmi et al., Design and optimization of two dimensional photonic crystal based optical filter. J. Nonlinear Opt. Phys. Mater. 24(3), 1550027 (2015). https://doi.org/10.1142/S0218863515500277 M. Radhouene et al., Design and analysis a thermo-optic switch based on photonic crystal ring resonator. Optik 172, 924–929 (2018). https://doi.org/10.1016/j.ijleo.2018.07.118 S. Robinson, R. Nakkeeran, PC based optical salinity sensor for different temperatures. Photon. Sens. 2(2), 187–192 (2012). https://doi.org/10.1007/s13320-012-0055-6 K. Swain et al., Realization of a temperature sensor using both two- and three-dimensional photonic structures through a machine learning technique. J. Comput. Electron. 20(4), 1588–1598 (2021). https://doi.org/10.1007/s10825-021-01725-4 V.S. Sundaresan, N. Ramrao, P. Sharan, K. Murugan, Computational analysis of core cavity Mach-Zehnder interferometer based optical sensor for various types of virus. Indian J. Eng. Mater. Sci. (IJEMS) 28(2), 209–215 (2021) I.H. Giden, Photonic crystal based interferometric design for label-free all-optical sensing applications. Opt. Express 30(12), 21679–21686 (2022). https://doi.org/10.1364/OE.458772 ScienceDirect.Com | Science, Health and Medical Journals, Full Text Articles and Books. https://www.sciencedirect.com/science/article/am/pii/S0924424715300790. Accessed 15 Nov. 2022. C.S. Mallika et al., Photonic crystal ring resonator structure for temperature measurement. Optik – Int. J. Light Electron Opt. 20(126), 2252–2255 (2015). https://doi.org/10.1016/j.ijleo.2015.05.123 B.M. Kumar, Hemanth, et al. 2D photonic crystal based biosensor for detection of cervical cancer cell. In: 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), IEEE, pp. 1–4. (2020). https://doi.org/10.1109/CONECCT50063.2020.9198418 S.A. Nehal et al., Highly sensitive lab-on-chip with deep learning AI for detection of bacteria in water. Int. J. Inform. Technol. 12(2), 495–501 (2020). https://doi.org/10.1007/s41870-019-00363-1 R. Zegadi, L. Ziet, A. Zegadi, Design of high sensitive temperature sensor based on two-dimensional photonic crystal. SILICON 12(9), 2133–2139 (2020). https://doi.org/10.1007/s12633-019-00303-5 S. Pal, A.R. Yadav, M.A. Lifson, J.E. Baker, P.M. Fauchet, B.L. Miller, Selective virus detection in complex sample matrices with photonic crystal optical cavities. Biosens. Bioelectron. 44, 229–234 (2013). https://doi.org/10.1016/j.bios.2013.01.004 X. Zhang et al., Predicting the slump of industrially produced concrete using machine learning: a multiclass classification approach. J. Build. Eng. 58, 104997 (2022). https://doi.org/10.1016/j.jobe.2022.104997 M. Akbari, S. Mortazavi, Three-dimensional numerical simulation of deformation of a single drop under uniform electric field. J. Appl. Fluid Mech. 10(2), 693–702 (2017). https://doi.org/10.18869/acadpub.jafm.73.239.27034 Y. Aggarwal, J. Das, P.M. Mazumder, R. Kumar, R.K. Sinha, Heart rate variability features from nonlinear cardiac dynamics in identification of diabetes using artificial neural network and support vector machine. Biocybernetics Biomed. Eng. 40(3), 1002–1009 (2020) A.K. Verma, S. Pal, S. Kumar, Classification of skin disease using ensemble data mining techniques. Asian Pac. J. Cancer Prev. 20(6), 1887–1894 (2019). https://doi.org/10.31557/APJCP.2019.20.6.1887.PMID:31244314;PMCID:PMC7021628 M.R. Farokhzad, L. Ebrahimi, A novel adaptive neuro fuzzy inference system for the diagnosis of liver disease. Int. J. Acad. Res. Comput. Eng. 1(1), 61–66 (2016) G. Battineni, G.G. Sagaro, N. Chinatalapudi, F. Amenta, Applications of machine learning predictive models in the chronic disease diagnosis. J. Pers. Med. 10(2), 21 (2020). https://doi.org/10.3390/jpm10020021.PMID:32244292;PMCID:PMC7354442 K. Budholiya, S.K. Shrivastava, V. Sharma, An optimized XGBoost based diagnostic system for effective prediction of heart disease. J. King Saud Univ. – Comput. Inform. Sci. 34(7), 4514–4523 (2022). https://doi.org/10.1016/j.jksuci.2020.10.013 N. Fahim, E. Samik, N. Khadiza, Md Abir, M. Mueem, Parkinson Disease Detection: Using XGBoost Algorithm to Detect Early Onset Parkinson Disease. (2020). S. Vishalatchi, K. Murugan, R. Nagaraj, H.N. Gayathri, Design and analysis of 2d photonic biosensor with ml for respiratory virus detection: biosensor with ml for respiratory virus detection. Indian J. Eng. Mater. Sci. (IJEMS) 30(4), 614–621 (2023) D. Yang, H. Tian, Y. Ji, Nanoscale low crosstalk photonic crystal integrated sensor array. IEEE Photon. J. 6(1), 1–7 (2014). https://doi.org/10.1109/JPHOT.2014.2302805 S. Olyaee, A.M. Bahabady, Design and optimization of diamond-shaped biosensor using photonic crystal nano-ring resonator. Optik 126(20), 2560–2564 (2015). https://doi.org/10.1016/j.ijleo.2015.06.037 L. Ali et al., High-quality optical ring resonator-based biosensor for cancer detection. IEEE Sens. J. 20(4), 1867–1875 (2020). https://doi.org/10.1109/JSEN.2019.2950664 S. Vishalatchi, R. Nagaraj, Sensitivity Analysis of 2D Photonic Crystal Based Hexagonal Ring Resonator for Cervical Cancer Detection. 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom), (2021), pp. 720–24. M. Arsalan, M. Owais, T. Mahmood, S.W. Cho, K.R. Park, Aiding the diagnosis of diabetic and hypertensive retinopathy using artificial intelligence-based semantic segmentation. J. Clin. Med. 8(9), 1446 (2019). https://doi.org/10.3390/jcm8091446 S. Sharma, L. Tharani, Use of AI techniques on photonic crystal sensing for the detection of tumor. J. Electron. Electromed. Eng. Med. Inform. 4(2), 62–69 (2022). https://doi.org/10.35882/jeeemi.v4i2.2 M.G. Daher, S.A. Taya, I. Colak, S.K. Patel, M.M. Olaimat, O. Ramahi, Surface plasmon resonance biosensor based on graphene layer for the detection of waterborne bacteria. J. Biophotonics 15(5), e202200001 (2022) A.K. Singh, A. Kulshreshtha, A. Banerjee, Design of corrosion sensors by using 1D quaternary photonic crystal with defect layer. J. Opt. 52, 1919–1924 (2023). https://doi.org/10.1007/s12596-022-01085-7 J.C. Ramirez, D. Grajales García, J. Maldonado, A. Fernández-Gavela, Current trends in photonic biosensors: advances towards multiplexed integration. Chemosensors 10(10), 398 (2022)