Modeling and identification of electro-elastic nonlinearities in ultrasonic power transfer systems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kazmierkowski, M.P., Moradewicz, A.J.: Unplugged but connected: review of contactless energy transfer systems. IEEE Ind. Electron. Mag. 6(4), 47–55 (2012)
Shidujaman, M., Samani, H., Arif, M.: Wireless power transmission trends. In: 2014 International Conference on Informatics, Electronics & Vision (ICIEV), pp. 1–6. IEEE (2014)
Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J .D., Fisher, P., Soljačić, M.: Wireless power transfer via strongly coupled magnetic resonances. Science 5834(317), 83–86 (2007)
Dai, J., Ludois, D.C., et al.: A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications. IEEE Trans. Power Electron. 30(11), 6017–6029 (2015)
Brown, W.C.: The history of power transmission by radio waves. IEEE Trans. Microw. Theory Tech. 32(9), 1230–1242 (1984)
Roes, M.G., Duarte, J.L., Hendrix, M.A., Lomonova, E.A.: Acoustic energy transfer: a review. IEEE Trans. Ind. Electron. 60(1), 242–248 (2013)
Kawanabe, H., Katane, T., Saotome, H., Saito, O., Kobayashi, K.: Power and information transmission to implanted medical device using ultrasonic. Jpn. J. Appl. Phys. 40(5S), 3865 (2001)
Suzuki, S.-N., Kimura, S., Katane, T., Saotome, H., Saito, O., Kobayashi, K.: Power and interactive information transmission to implanted medical device using ultrasonic. Jpn. J. Appl. Phys. 41(5S), 3600 (2002)
Maleki, T., Cao, N., Song, S.H., Kao, C., Ko, S.-C., Ziaie, B.: An ultrasonically powered implantable micro-oxygen generator (imog). IEEE Trans. Biomed. Eng. 58(11), 3104–3111 (2011)
Ozeri, S., Shmilovitz, D.: Simultaneous backward data transmission and power harvesting in an ultrasonic transcutaneous energy transfer link employing acoustically dependent electric impedance modulation. Ultrasonics 54(7), 1929–1937 (2014)
Basaeri, H., Christensen, D.B., Roundy, S.: A review of acoustic power transfer for bio-medical implants. Smart Mater. Struct. 25(12), 123001 (2016)
Christensen, D.B., Roundy, S.: Ultrasonically powered piezoelectric generators for bio-implantable sensors: plate versus diaphragm. J. Intell. Mater. Syst. Struct., 27(8), 1092–1105 (2016)
Bakhtiari-Nejad, M., Elnahhas, A., Hajj, M.R., Shahab, S.: Acoustic holograms in contactless ultrasonic power transfer systems: modeling and experiment. J. Appl. Phys. 124(24), 244901 (2018)
Hu, Y., Zhang, X., Yang, J., Jiang, Q.: Transmitting electric energy through a metal wall by acoustic waves using piezoelectric transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(7), 773–781 (2003)
Sherrit, S., Badescu, M., Bao, X., Bar-Cohen, Y., Chang, Z.: Efficient electromechanical network model for wireless acoustic-electric feed-throughs. In: Smart Structures and Materials 2005: Smart Sensor Technology and Measurement Systems, vol. 5758, pp. 362–373. International Society for Optics and Photonics (2005)
Bao, X., Biederman, W., Sherrit, S., Badescu, M., Bar-Cohen, Y., Jones, C., Aldrich, J., Chang, Z.: High-power piezoelectric acoustic-electric power feedthru for metal walls. In: Industrial and Commercial Applications of Smart Structures Technologies 2008, vol. 6930, p. 69300Z. International Society for Optics and Photonics (2008)
Zaid, T., Saat, S., Yusop, Y., Jamal, N.: Contactless energy transfer using acoustic approach-a review. In: 2014 International Conference on Computer, Communications, and Control Technology (I4CT) , pp. 376–381. IEEE (2014)
Awal, M.R., Jusoh, M., Sabapathy, T., Kamarudin, M.R., Rahim, R.A.: State-of-the-art developments of acoustic energy transfer. Int. J. Antennas Propag. 2016 (2016)
Shahab, S., Erturk, A.: Contactless ultrasonic energy transfer for wireless systems: acoustic-piezoelectric structure interaction modeling and performance enhancement. Smart Mater. Struct. 23(12), 125032 (2014)
Shahab, S., Gray, M., Erturk, A.: Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: modeling and experiment. J. Appl. Phys. 117(10), 104903 (2015)
Gorostiaga, M., Wapler, M., Wallrabe, U.: Analytic model for ultrasound energy receivers and their optimal electric loads. Smart Materials and Structures 26(8), 085003 (2017)
Gorostiaga, M., Wapler, M., Wallrabe, U.: Analytic model for ultrasound energy receivers and their optimal electric loads ii: Experimental validation. Smart Mater. Struct. 26(10), 105021 (2017)
Tseng, V.F.G., Bedair, S.S., Lazarus, N.: Acoustic wireless power transfer with receiver array for enhanced performance. In: 2017 IEEE Wireless Power Transfer Conference (WPTC), pp. 1–4 . IEEE (2017)
Tseng, V.F.-G., Bedair, S.S., Lazarus, N.: Phased array focusing for acoustic wireless power transfer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(1), 39–49 (2018)
Christensen, D.B., Roundy, S.: Non-dimensional analysis of depth, orientation, and alignment in acoustic power transfer systems. Smart Mater. Struct. 27, 125013 (2018)
Hamilton, M .F., Blackstock, D .T., et al.: Nonlinear Acoustics, vol. 1. Academic press, San Diego (1998)
Rozanova-Pierrat, A.: Mathematical analysis of khokhlov-zabolotskaya-kuznetsov (kzk) equation. Prepint of Laboratory Jaques-Louis Lions, Paris 6, 1–69 (2006)
Aurelle, N., Guyomar, D., Richard, C., Gonnard, P., Eyraud, L.: Nonlinear behavior of an ultrasonic transducer. Ultrasonics 34(2–5), 187–191 (1996)
Guyomar, D., Aurelle, N., Eyraud, L.: Piezoelectric ceramics nonlinear behavior. application to langevin transducer. J. de Phys. III 7 6, 1197–1208 (1997)
Von Wagner, U., Hagedorn, P.: Piezo-beam systems subjected to weak electric field: experiments and modelling of non-linearities. J. Sound Vib. 256(5), 861–872 (2002)
Mahmoodi, S.N., Jalili, N., Daqaq, M.F.: Modeling, nonlinear dynamics, and identification of a piezoelectrically actuated microcantilever sensor. IEEE/ASME Trans. Mechatron. 13(1), 58–65 (2008)
Stanton, S.C., Erturk, A., Mann, B.P., Inman, D.J.: Nonlinear piezoelectricity in electroelastic energy harvesters: modeling and experimental identification. J. Appl. Phys. 108(7), 074903 (2010)
Leadenham, S., Erturk, A.: Unified nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation. Nonlinear Dyn. 79(3), 1727–1743 (2015)
Meesala, V.C., Hajj, M.R., Shahab, S.: Modeling electroelastic nonlinearities in ultrasound acoustic energy transfer systems. In: Active and Passive Smart Structures and Integrated Systems XII, vol. 10595, p. 105951G . International Society for Optics and Photonics(2018)
Kinsler, L.E., Frey, A.R., Coppens, A.B., Sanders, J.V. (eds.): Fundamentals of acoustics, 4th edn, p. 560. Wiley, Hoboken (1999). ISBN 0-471-84789-5
Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, Hoboken (2008)
Nayfeh, A.H.: Introduction to perturbation techniques. Wiley, Hoboken (2011)
Crandall, S.H.: Dynamics of mechanical and electromechanical systems. McGraw-Hill, New York (1968)
Hagood, N.W., Chung, W.H., Von Flotow, A.: Modelling of piezoelectric actuator dynamics for active structural control. J. Intell. Mater. Syst. Struct. 1(3), 327–354 (1990)
Sodano, H.A.: Macro-fiber composites for sensing, actuation and power generation. Ph.D. thesis, Virginia Tech (2003)
Anton, S.R.: Multifunctional piezoelectric energy harvesting concepts. Ph.D. thesis, Virginia Tech (2011)
Shaw, E.: On the resonant vibrations of thick barium titanate disks. J. Acoust. Soc. Am. 28(1), 38–50 (1956)
Ikegami, S., Ueda, I., Kobayashi, S.: Frequency spectra of resonant vibration in disk plates of PbTiO$${}_{3}$$ piezoelectric ceramics. J. Acoust. Soc. Am. 55(2), 339–344 (1974)
Ueha, S., Sakuma, S., Mori, E.: Measurement of vibration velocity distributions and mode analysis in thick disks of Pb(Zr$$\cdot $$Ti)O$${}_3$$. J. Acoust. Soc. Am. 73(5), 1842–1847 (1983)
Guo, N.: The vibration characteristics of piezoelectric discs. Ph.D. thesis, University of London (1989)
Kunkel, H., Locke, S., Pikeroen, B.: Finite-element analysis of vibrational modes in piezoelectric ceramic disks. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37(4), 316–328 (1990)
Guo, N., Cawley, P., Hitchings, D.: The finite element analysis of the vibration characteristics of piezoelectric discs. J. Sound Vib. 159(1), 115–138 (1992)
Meirovitch, L.: Fundamentals of Vibrations. Waveland Press, Long Grove (2010)
Meesala, V.C., Hajj, M.R.: Identification of nonlinear piezoelectric coefficients. J. Appl. Phys. 124(6), 065112 (2018)
Gonnard, P., Perrin, V., Briot, R., Guyomar, D., Albareda, A.: Characterization of the piezoelectric ceramic mechanical nonlinear behavior. In: Proceedings of the Eleventh IEEE International Symposium on Applications of Ferroelectrics, 1998 (ISAF 98), pp. 353–356. IEEE (1998)
Wang, D., Fotinich, Y., Carman, G.P.: Influence of temperature on the electromechanical and fatigue behavior of piezoelectric ceramics. J. Appl. Phys. 83(10), 5342–5350 (1998)
Wolf, R., Trolier-McKinstry, S.: Temperature dependence of the piezoelectric response in lead zirconate titanate films. J. Appl. Phys. 95(3), 1397–1406 (2004)