Modeling and identification of electro-elastic nonlinearities in ultrasonic power transfer systems

Springer Science and Business Media LLC - Tập 99 Số 1 - Trang 249-268 - 2020
Vamsi C. Meesala1, Muhammad R. Hajj2, Shima Shahab1,3
1Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, USA
2Davidson Laboratory, Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, USA
3Department of Mechanical Engineering, Blacksburg, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kazmierkowski, M.P., Moradewicz, A.J.: Unplugged but connected: review of contactless energy transfer systems. IEEE Ind. Electron. Mag. 6(4), 47–55 (2012)

Shidujaman, M., Samani, H., Arif, M.: Wireless power transmission trends. In: 2014 International Conference on Informatics, Electronics & Vision (ICIEV), pp. 1–6. IEEE (2014)

Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J .D., Fisher, P., Soljačić, M.: Wireless power transfer via strongly coupled magnetic resonances. Science 5834(317), 83–86 (2007)

Dai, J., Ludois, D.C., et al.: A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications. IEEE Trans. Power Electron. 30(11), 6017–6029 (2015)

Brown, W.C.: The history of power transmission by radio waves. IEEE Trans. Microw. Theory Tech. 32(9), 1230–1242 (1984)

Roes, M.G., Duarte, J.L., Hendrix, M.A., Lomonova, E.A.: Acoustic energy transfer: a review. IEEE Trans. Ind. Electron. 60(1), 242–248 (2013)

Kawanabe, H., Katane, T., Saotome, H., Saito, O., Kobayashi, K.: Power and information transmission to implanted medical device using ultrasonic. Jpn. J. Appl. Phys. 40(5S), 3865 (2001)

Suzuki, S.-N., Kimura, S., Katane, T., Saotome, H., Saito, O., Kobayashi, K.: Power and interactive information transmission to implanted medical device using ultrasonic. Jpn. J. Appl. Phys. 41(5S), 3600 (2002)

Maleki, T., Cao, N., Song, S.H., Kao, C., Ko, S.-C., Ziaie, B.: An ultrasonically powered implantable micro-oxygen generator (imog). IEEE Trans. Biomed. Eng. 58(11), 3104–3111 (2011)

Ozeri, S., Shmilovitz, D.: Simultaneous backward data transmission and power harvesting in an ultrasonic transcutaneous energy transfer link employing acoustically dependent electric impedance modulation. Ultrasonics 54(7), 1929–1937 (2014)

Basaeri, H., Christensen, D.B., Roundy, S.: A review of acoustic power transfer for bio-medical implants. Smart Mater. Struct. 25(12), 123001 (2016)

Christensen, D.B., Roundy, S.: Ultrasonically powered piezoelectric generators for bio-implantable sensors: plate versus diaphragm. J. Intell. Mater. Syst. Struct., 27(8), 1092–1105 (2016)

Bakhtiari-Nejad, M., Elnahhas, A., Hajj, M.R., Shahab, S.: Acoustic holograms in contactless ultrasonic power transfer systems: modeling and experiment. J. Appl. Phys. 124(24), 244901 (2018)

Hu, Y., Zhang, X., Yang, J., Jiang, Q.: Transmitting electric energy through a metal wall by acoustic waves using piezoelectric transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(7), 773–781 (2003)

Sherrit, S., Badescu, M., Bao, X., Bar-Cohen, Y., Chang, Z.: Efficient electromechanical network model for wireless acoustic-electric feed-throughs. In: Smart Structures and Materials 2005: Smart Sensor Technology and Measurement Systems, vol. 5758, pp. 362–373. International Society for Optics and Photonics (2005)

Bao, X., Biederman, W., Sherrit, S., Badescu, M., Bar-Cohen, Y., Jones, C., Aldrich, J., Chang, Z.: High-power piezoelectric acoustic-electric power feedthru for metal walls. In: Industrial and Commercial Applications of Smart Structures Technologies 2008, vol. 6930, p. 69300Z. International Society for Optics and Photonics (2008)

Zaid, T., Saat, S., Yusop, Y., Jamal, N.: Contactless energy transfer using acoustic approach-a review. In: 2014 International Conference on Computer, Communications, and Control Technology (I4CT) , pp. 376–381. IEEE (2014)

Awal, M.R., Jusoh, M., Sabapathy, T., Kamarudin, M.R., Rahim, R.A.: State-of-the-art developments of acoustic energy transfer. Int. J. Antennas Propag. 2016 (2016)

Shahab, S., Erturk, A.: Contactless ultrasonic energy transfer for wireless systems: acoustic-piezoelectric structure interaction modeling and performance enhancement. Smart Mater. Struct. 23(12), 125032 (2014)

Shahab, S., Gray, M., Erturk, A.: Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: modeling and experiment. J. Appl. Phys. 117(10), 104903 (2015)

Gorostiaga, M., Wapler, M., Wallrabe, U.: Analytic model for ultrasound energy receivers and their optimal electric loads. Smart Materials and Structures 26(8), 085003 (2017)

Gorostiaga, M., Wapler, M., Wallrabe, U.: Analytic model for ultrasound energy receivers and their optimal electric loads ii: Experimental validation. Smart Mater. Struct. 26(10), 105021 (2017)

Tseng, V.F.G., Bedair, S.S., Lazarus, N.: Acoustic wireless power transfer with receiver array for enhanced performance. In: 2017 IEEE Wireless Power Transfer Conference (WPTC), pp. 1–4 . IEEE (2017)

Tseng, V.F.-G., Bedair, S.S., Lazarus, N.: Phased array focusing for acoustic wireless power transfer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(1), 39–49 (2018)

Christensen, D.B., Roundy, S.: Non-dimensional analysis of depth, orientation, and alignment in acoustic power transfer systems. Smart Mater. Struct. 27, 125013 (2018)

Hamilton, M .F., Blackstock, D .T., et al.: Nonlinear Acoustics, vol. 1. Academic press, San Diego (1998)

Rozanova-Pierrat, A.: Mathematical analysis of khokhlov-zabolotskaya-kuznetsov (kzk) equation. Prepint of Laboratory Jaques-Louis Lions, Paris 6, 1–69 (2006)

Aurelle, N., Guyomar, D., Richard, C., Gonnard, P., Eyraud, L.: Nonlinear behavior of an ultrasonic transducer. Ultrasonics 34(2–5), 187–191 (1996)

Guyomar, D., Aurelle, N., Eyraud, L.: Piezoelectric ceramics nonlinear behavior. application to langevin transducer. J. de Phys. III 7 6, 1197–1208 (1997)

Von Wagner, U., Hagedorn, P.: Piezo-beam systems subjected to weak electric field: experiments and modelling of non-linearities. J. Sound Vib. 256(5), 861–872 (2002)

Mahmoodi, S.N., Jalili, N., Daqaq, M.F.: Modeling, nonlinear dynamics, and identification of a piezoelectrically actuated microcantilever sensor. IEEE/ASME Trans. Mechatron. 13(1), 58–65 (2008)

Stanton, S.C., Erturk, A., Mann, B.P., Inman, D.J.: Nonlinear piezoelectricity in electroelastic energy harvesters: modeling and experimental identification. J. Appl. Phys. 108(7), 074903 (2010)

Leadenham, S., Erturk, A.: Unified nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation. Nonlinear Dyn. 79(3), 1727–1743 (2015)

Meesala, V.C., Hajj, M.R., Shahab, S.: Modeling electroelastic nonlinearities in ultrasound acoustic energy transfer systems. In: Active and Passive Smart Structures and Integrated Systems XII, vol. 10595, p. 105951G . International Society for Optics and Photonics(2018)

Kinsler, L.E., Frey, A.R., Coppens, A.B., Sanders, J.V. (eds.): Fundamentals of acoustics, 4th edn, p. 560. Wiley, Hoboken (1999). ISBN 0-471-84789-5

Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, Hoboken (2008)

Nayfeh, A.H.: Introduction to perturbation techniques. Wiley, Hoboken (2011)

Crandall, S.H.: Dynamics of mechanical and electromechanical systems. McGraw-Hill, New York (1968)

Hagood, N.W., Chung, W.H., Von Flotow, A.: Modelling of piezoelectric actuator dynamics for active structural control. J. Intell. Mater. Syst. Struct. 1(3), 327–354 (1990)

Sodano, H.A.: Macro-fiber composites for sensing, actuation and power generation. Ph.D. thesis, Virginia Tech (2003)

Anton, S.R.: Multifunctional piezoelectric energy harvesting concepts. Ph.D. thesis, Virginia Tech (2011)

Shaw, E.: On the resonant vibrations of thick barium titanate disks. J. Acoust. Soc. Am. 28(1), 38–50 (1956)

Ikegami, S., Ueda, I., Kobayashi, S.: Frequency spectra of resonant vibration in disk plates of PbTiO$${}_{3}$$ piezoelectric ceramics. J. Acoust. Soc. Am. 55(2), 339–344 (1974)

Ueha, S., Sakuma, S., Mori, E.: Measurement of vibration velocity distributions and mode analysis in thick disks of Pb(Zr$$\cdot $$Ti)O$${}_3$$. J. Acoust. Soc. Am. 73(5), 1842–1847 (1983)

Guo, N.: The vibration characteristics of piezoelectric discs. Ph.D. thesis, University of London (1989)

Kunkel, H., Locke, S., Pikeroen, B.: Finite-element analysis of vibrational modes in piezoelectric ceramic disks. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37(4), 316–328 (1990)

Guo, N., Cawley, P., Hitchings, D.: The finite element analysis of the vibration characteristics of piezoelectric discs. J. Sound Vib. 159(1), 115–138 (1992)

Butler, J.L., Sherman, C.H.: Transducers and Arrays for Underwater Sound. Springer, Berlin (2016)

Meirovitch, L.: Fundamentals of Vibrations. Waveland Press, Long Grove (2010)

Meesala, V.C., Hajj, M.R.: Identification of nonlinear piezoelectric coefficients. J. Appl. Phys. 124(6), 065112 (2018)

Gonnard, P., Perrin, V., Briot, R., Guyomar, D., Albareda, A.: Characterization of the piezoelectric ceramic mechanical nonlinear behavior. In: Proceedings of the Eleventh IEEE International Symposium on Applications of Ferroelectrics, 1998 (ISAF 98), pp. 353–356. IEEE (1998)

Jaffe, H., Berlincourt, D.: Piezoelectric transducer materials. Proc. IEEE 53(10), 1372–1386 (1965)

Wang, D., Fotinich, Y., Carman, G.P.: Influence of temperature on the electromechanical and fatigue behavior of piezoelectric ceramics. J. Appl. Phys. 83(10), 5342–5350 (1998)

Wolf, R., Trolier-McKinstry, S.: Temperature dependence of the piezoelectric response in lead zirconate titanate films. J. Appl. Phys. 95(3), 1397–1406 (2004)

Chen, Y., Liang, D., Wang, Q., Zhu, J.: Microstructures, dielectric, and piezoelectric properties of w/cr co-doped bi4ti3o12 ceramics. J. Appl. Phys. 116(7), 074108 (2014)