Modeling and forecasting commodity market volatility with long‐term economic and financial variables

Journal of Forecasting - Tập 39 Số 2 - Trang 126-142 - 2020
Duc Khuong Nguyen1,2, Thomas Walther3,4
1IPAG Lab, IPAG Business School, 184 Boulevard Saint-Germain, 75006 Paris, France
2School of Public and Environmental Affairs, Indiana University, 107 S Indiana Ave, Bloomington, IN 47405 USA
3Faculty of Business and Economics echnische Universität Dresden Dresden 01062 Germany
4Institute for Operations Research and Computational Finance, University of St. Gallen, St. Gallen, 9000 Switzerland

Tóm tắt

Abstract

This paper investigates the time‐varying volatility patterns of some major commodities as well as the potential factors that drive their long‐term volatility component. For this purpose, we make use of a recently proposed generalized autoregressive conditional heteroskedasticity–mixed data sampling approach, which typically allows us to examine the role of economic and financial variables of different frequencies. Using commodity futures for Crude Oil (WTI and Brent), Gold, Silver and Platinum, as well as a commodity index, our results show the necessity for disentangling the short‐term and long‐term components in modeling and forecasting commodity volatility. They also indicate that the long‐term volatility of most commodity futures is significantly driven by the level of global real economic activity as well as changes in consumer sentiment, industrial production, and economic policy uncertainty. However, the forecasting results are not alike across commodity futures as no single model fits all commodities.

Từ khóa


Tài liệu tham khảo

Acerbi C., 2014, Backtesting expected shortfall, Risk Magazine, 76

10.1016/j.jbankfin.2015.07.008

10.1016/j.jimonfin.2011.07.008

10.1002/for.2256

10.1016/j.mulfin.2016.07.003

Barsky R., 2002, NBER Macroeconomics Annual 2001, 137

Basel Committee on Banking Supervision, 2019, Minimum Capital Requirements for Market Risk

10.1016/j.resourpol.2009.12.002

10.1016/j.ijforecast.2014.06.005

10.1111/j.1540-6288.2010.00244.x

10.1016/j.jbankfin.2009.12.008

10.1016/j.ejor.2016.06.052

10.2469/faj.v36.n3.27

10.1016/0304-4076(86)90063-1

Büyükşahin B. &Robe M. A.(2011).Does “paper oil” matter? Energy markets' financialization and equity–commodity co‐movements.https://www.ssrn.com/abstract=1855264

10.1016/j.jimonfin.2013.08.004

10.1002/jae.2404

10.1016/j.jempfin.2014.03.009

10.1080/07350015.2018.1482759

10.1016/j.jbankfin.2013.11.034

10.1016/j.jbankfin.2011.02.022

Domanski D., 2007, Financial investors and commodity markets, BIS Quarterly Review, 53

Dönmez A. &Magrini E.(2013).Agricultural commodity price volatility and its macroeconomic determinants Joint Research Centre Luxembourg.https://doi.org/10.2791/23669

Dwyer A., 2011, Global commodity markets: Price volatility and financialisation, Bulletin, 49

10.1017/S0022109010000372

10.2307/1912773

10.1162/REST_a_00300

Engle R. F., 1999, Cointegration, causality, and forecasting: A Festschrift in honour of Clive, 475, 10.1093/oso/9780198296836.003.0020

10.1093/rfs/hhn004

10.1002/fut.21897

10.1016/j.irfa.2011.02.014

Ghysels E., 2004, MIDAS touch: Mixed data sampling regression models, CIRANO Working Papers, 20, 1

10.1080/07474930600972467

10.2469/faj.v62.n2.4083

10.3982/ECTA5771

10.1093/ajae/aas122

10.1016/j.eneco.2014.06.004

Kilian L., 2009, Not all oil price shocks are alike: Disentangling demand and supply shocks in the crude oil market, Family Economics Review, 99, 1053

10.1162/REST_a_00086

10.1016/j.frl.2017.05.002

10.3905/jod.1995.407942

Lintner J. V., 1983, The potential role of managed commodity–financial futures accounts (and/or funds) in portfolios of stocks and bonds

10.1002/fut.21916

10.1016/j.econmod.2016.10.008

10.1016/j.jbankfin.2013.07.009

10.1016/j.jbankfin.2011.05.010

Nieto B., 2015, Macroeconomic and financial determinants of the volatility of corporate bond returns, Quarterly Journal of Finance, 5

10.1016/j.jempfin.2014.10.003

10.1016/j.jempfin.2017.06.005

10.3905/JOD.2008.16.2.054

10.1002/fut.20120

Prokopczuk M. Stancu A. &Symeonidis L.(2017).The economic drivers of time‐varying commodity market volatility (Working paper) Retrieved from.https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2678883

Sansó A., 2004, Testing for changes in the unconditional variance of financial time series, Revista de Economía financiera, 4, 32

10.1111/j.1540-6261.1989.tb02647.x

10.1016/j.intfin.2012.11.007

10.1016/j.jcomm.2017.06.002

10.2469/faj.v68.n6.5

Verma R., 2012, Behavioral finance and pricing of derivatives: Implications for Dodd–Frank Act, Review of Futures Markets, 20, 21

10.1016/j.ribaf.2017.01.003

10.1017/S0266466614000334

10.1016/j.eneco.2017.09.016

10.1007/s00181-015-1027-7

10.5018/economics-ejournal.ja.2016-20