Modeling and experimental validation on the interference of mechanical plucking energy harvesting
Tài liệu tham khảo
Stephen, 2006, On energy harvesting from ambient vibration, J. Sound Vib., 293, 409, 10.1016/j.jsv.2005.10.003
Ahmed, 2017, A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity, Smart Mater. Struct., 26, 10.1088/1361-665X/aa7bfb
Tang, 2010, Toward broadband vibration-based energy harvesting, J. Intell. Mater. Syst. Struct., 21, 1867, 10.1177/1045389X10390249
Zhou, 2018, Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting, Commun. Nonlinear Sci. Numer. Simul., 61, 271, 10.1016/j.cnsns.2018.02.017
Kuang, 2016, Characterisation of a knee-joint energy harvester powering a wireless communication sensing node, Smart Mater. Struct., 25, 10.1088/0964-1726/25/5/055013
G. Manla, N. White, J. Tudor, Harvesting energy from vehicle wheels, Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International, IEEE, 2009, pp. 1389-1392.
Kim, 2019, Self-tuning stochastic resonance energy harvesting for rotating systems under modulated noise and its application to smart tires, Mech. Syst. Sig. Process., 122, 769, 10.1016/j.ymssp.2018.12.040
Mei, 2019, The benefits of an asymmetric tri-stable energy harvester in low-frequency rotational motion, Appl. Phys Express, 12, 10.7567/1882-0786/ab0b75
S. Fang, W.H. Liao, Impulsively-excited bistable energy harvester combined with electromagnetic mechanism, ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, American Society of Mechanical Engineers, 2018, pp. SMASIS2018-7979.
Xie, 2014, Energy harvesting from transverse ocean waves by a piezoelectric plate, Int. J. Eng. Sci., 81, 41, 10.1016/j.ijengsci.2014.04.003
Gu, 2011, Compact passively self-tuning energy harvesting for rotating applications, Smart Mater. Struct., 21
Li, 2019, Analytical modeling and validation of multi-mode piezoelectric energy harvester, Mech. Syst. Sig. Process., 124, 613, 10.1016/j.ymssp.2019.02.003
Wang, 2018, Dynamic and energetic characteristics of a bistable piezoelectric vibration energy harvester with an elastic magnifier, Mech. Syst. Sig. Process., 105, 427, 10.1016/j.ymssp.2017.12.025
Zhou, 2013, Enhanced broadband piezoelectric energy harvesting using rotatable magnets, Appl. Phys. Lett., 102, 10.1063/1.4803445
Boccalero, 2017, Power harvesting by electromagnetic coupling from wind-induced limit cycle oscillations, Smart Mater. Struct., 26, 10.1088/1361-665X/aa78e2
Kefal, 2019, Modelling and parameter identification of electromechanical systems for energy harvesting and sensing, Mech. Syst. Sig. Process., 121, 890, 10.1016/j.ymssp.2018.10.042
Yan, 2018, Electromagnetic Energy Harvester for Vibration Control of Space Rack: Modeling, Optim., Anal., J. Aerosp. Eng., 32, 04018126, 10.1061/(ASCE)AS.1943-5525.0000955
Perez, 2016, A cm scale electret-based electrostatic wind turbine for low-speed energy harvesting applications, Smart Mater. Struct., 25, 10.1088/0964-1726/25/4/045015
Lin, 2013, Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy, Nano Lett., 13, 2916, 10.1021/nl4013002
Fu, 2019, Triboelectric energy harvesting from the vibro-impact of three cantilevered beams, Mech. Syst. Sig. Process., 121, 509, 10.1016/j.ymssp.2018.11.043
Pozzi, 2012, The pizzicato knee-joint energy harvester: characterization with biomechanical data and the effect of backpack load, Smart Mater. Struct., 21, 10.1088/0964-1726/21/7/075023
Kathpalia, 2017, An experimentally validated model for geometrically nonlinear plucking-based frequency up-conversion in energy harvesting, Smart Mater. Struct., 27
Dauksevicius, 2018, Analysis of magnetic plucking dynamics in a frequency up-converting piezoelectric energy harvester, Smart Mater. Struct., 27, 10.1088/1361-665X/aac8ad
Fu, 2018, Rotational energy harvesting using bi-stability and frequency up-conversion for low-power sensing applications: Theoretical modelling and experimental validation, Mech. Syst. Sig. Process., 125, 229, 10.1016/j.ymssp.2018.04.043
Priya, 2005, Modeling of electric energy harvesting using piezoelectric windmill, Appl. Phys. Lett., 87, 10.1063/1.2119410
Pozzi, 2011, Plucked piezoelectric bimorphs for knee-joint energy harvesting: modelling and experimental validation, Smart Mater. Struct., 20, 10.1088/0964-1726/20/5/055007
Pozzi, 2012, Characterization of a rotary piezoelectric energy harvester based on plucking excitation for knee-joint wearable applications, Smart Mater. Struct., 21, 10.1088/0964-1726/21/5/055004
Bai, 2017, Fan-structure wind energy harvester using circular array of polyvinylidene fluoride cantilevers, J. Intell. Mater. Syst. Struct., 28, 653, 10.1177/1045389X16657201
Pozzi, 2018, Synchronicity and pure bending of bimorphs: a new approach to piezoelectric energy harvesting, Smart Mater. Struct., 27, 10.1088/1361-665X/aad073
S. Fang, X. Fu, W.H. Liao, Analysis of the interference in typical rotational plucking energy harvester, Active and Passive Smart Structures and Integrated Systems XII, International Society for Optics and Photonics, 2019, pp. 1096727.
Kuang, 2017, Design study of a mechanically plucked piezoelectric energy harvester using validated finite element modelling, Sens. Actuators, A, 263, 510, 10.1016/j.sna.2017.07.009
Fu, 2019, Modeling and analysis of piezoelectric energy harvesting with dynamic plucking mechanism, J. Vib. Acoust., 141, 10.1115/1.4042002
Inman, 1994
Hagood, 1990, Modelling of piezoelectric actuator dynamics for active structural control, J. Intell. Mater. Syst. Struct., 1, 327, 10.1177/1045389X9000100305
Johnson, 1985
Hale, 1999
Ng, 2005, Sensitivity analysis and energy harvesting for a self-powered piezoelectric sensor, J. Intell. Mater. Syst. Struct., 16, 785, 10.1177/1045389X05053151
Liang, 2012, Impedance modeling and analysis for piezoelectric energy harvesting systems, IEEE/ASME Trans. Mechatron., 17, 1145, 10.1109/TMECH.2011.2160275
Erturk, 2009, Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams, J. Vib. Acoust., 131, 10.1115/1.2981094
Erturk, 2008, Issues in mathematical modeling of piezoelectric energy harvesters, Smart Mater. Struct., 17, 10.1088/0964-1726/17/6/065016
Roundy, 2003, 45
Priya, 2009