Modeling and analysis of a photonic crystal embedded ENZ gyrotropic metatronic amplifier using the mode matching technique

Ali Allahpour Fadafan1, A. Abdipour1, Amir Nader Askarpour1
1Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cai, W., Chettiar, U.K., Kildishev, A.V., Shalaev, V.M.: Optical cloaking with non-magnetic metamaterials. Nat. Photonics 28(1), 224–227 (2007). https://doi.org/10.1038/nphoton.2007.28

Caligiuri, V., Pianelli, A., Miscuglio, M., Patra, A., MacCaferri, N., Caputo, R., De Luca, A.: Near- and mid-infrared graphene-based photonic architectures for ultrafast and low-power electro-optical switching and ultra-high resolution imaging. ACS Appl Nano Mater 3(12), 12218–12230 (2020). https://doi.org/10.1021/acsanm.0c02690

Dai, Ji., Luo, H., Moloney, M., Qiu, J.: Adjustable graphene/polyolefin elastomer epsilon-near-zero metamaterials at radiofrequency range. ACS Appl. Mater. Interfaces 12(19), 22019–22028 (2020). https://doi.org/10.1021/acsami.0c02979

Efros, A.L., Pokrovsky, A.L.: Dielectric photonic crystal as medium with negative electric permittivity and magnetic permeability. Solid State Commun. 129(10), 643–647 (2004). https://doi.org/10.1016/j.ssc.2003.12.022

Fadafan, A.A., Abdipour, A., Askarpour, A.N.: Design and analysis of a metatronic balanced amplifier using epsilon-near-zero metamaterials and photonic crystals. JOSA B 39(4), 1033–1041 (2022). https://doi.org/10.1364/JOSAB.448040

Godin, Y.A.: Effective complex permittivity tensor of a periodic array of cylinders. J. Math. Phys. 54(5), 1–13 (2013). https://doi.org/10.1063/1.4803490

Islam, M.T., Hoque, A., Almutairi, A.F., Amin, N.: Left-handed metamaterial-inspired unit cell for S-Band glucose sensing application. Sensors (switzerland) 19(1), 1–12 (2019). https://doi.org/10.3390/s19010169

Jiang, J., Xia, Y., Li, Y.: High isolated X-band MIMO array using novel wheel-like metamaterial decoupling structure. Appl. Comput. Electromagn. Soc. J. 34(12), 1829–1836 (2019)

Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photonic crystals: molding the flow of light. Princeton University Press Princeton, NJ, USA, Second Edi (1995)

Khan, S.A., Khan, N.Z., Xie, Y., Abbas, M.T., Rauf, M., Mehmood, I., Runowski, M., Agathopoulos, S., Zhu, J.: Optical sensing by metamaterials and metasurfaces: from physics to biomolecule detection. Adv Opt Mater 10(18), 2200500 (2022). https://doi.org/10.1002/ADOM.202200500

Li, H., Zhou, Z., He, Y., Sun, W., Li, Y., Liberal, I., Engheta, N.: Geometry-independent antenna based on epsilon-near-zero medium. Nature Commun 13(1), 3568 (2022). https://doi.org/10.1038/s41467-022-31013-z

Liberal, I. Epsilon-near-zero technologies as an optical interface to harsh-environment silicon carbide sensors (ENZSICSENS)

Maccaferri, N., Gabbani, A., Pineider, F., Kaihara, T., Tapani, T., Vavassori, P.: Magnetoplasmonics in confined geometries: current challenges and future opportunities. Appl. Phys. Lett. (2023). https://doi.org/10.1063/5.0136941

Mahmud, S., Karim, M., Islam, S.S., Shuvo, M.M.K., Akter, T., Almutairi, A.F., Islam, M.T.: A multi-band near perfect polarization and angular insensitive metamaterial absorber with a simple octagonal resonator for visible wavelength. IEEE Access 9, 117746–117760 (2021). https://doi.org/10.1109/ACCESS.2021.3106588

Martinez, F., Maldovan, M.: Metamaterials: optical, acoustic, elastic, heat, mass, electric, magnetic, and hydrodynamic cloaking. Mater Today Phys 27, 100819 (2022). https://doi.org/10.1016/J.MTPHYS.2022.100819

Miscuglio, M., Gui, Y., Ma, X., Ma, Z., Sun, S., El Ghazawi, T., Sorger, V.J.: Approximate analog computing with metatronic circuits. Commun. Phys. 4(1), 196 (2021). https://doi.org/10.1038/s42005-021-00683-4

Miscuglio, M., Gui, Y., Ma, X., Sun, S., El-Ghazawi, T., Itoh, T., Sorger, V. J.: Analog computing with metatronic circuits. arXiv preprint arXiv:2007.05380 (2020). https://doi.org/10.48550/arXiv.2007.05380.

Ni, J.H., Sarney, W.L., Leff, A.C., Cahill, J.P., Zhou, W.: Property variation in wavelength-thick epsilon-near-zero ITO metafilm for near IR photonic devices. Sci. Rep. 10(1), 1–8 (2020). https://doi.org/10.1038/s41598-020-57556-z

Pan, J., Yuan J., Lang T., Yeqi W., Zhijie C., Ningbo Z., Li, X., Liu, Z.: Optical Properties of Photonic Crystals. p. 7 in Vol. 80, Springer Series in Optical Sciences. Berlin, Heidelberg: Springer Berlin Heidelberg. (2020)

Pacheco-Peña, V., Engheta, N., Kuznetsov, S., Gentselev, A., Beruete, M.: Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies. Phys. Rev. Appl. 8(3), 1–10 (2017). https://doi.org/10.1103/PhysRevApplied.8.034036

Theocharidis, A., Kamalakis, T., Sphicopoulos, T.: Analysis of photonic crystal waveguide discontinuities using the mode matching method and application to device performance evaluation. J. Opt. Soc. Am. B 24(8), 1698–1706 (2007). https://doi.org/10.1364/JOSAB.24.001698

Thomaschewski, M., Gui, Y., Wang, H., Nouri, B.M., Altaleb, S., Dalir, H., Sorger, V.J.: Ultrafast charge and field driven optical modulators and switches. Ultrafast Phenomena and Nanophotonics XXVII 12419, 65–73 (2023). https://doi.org/10.1117/12.2650936

Tsakmakidis, K.L., Shen, L., Schulz, S.A., Zheng, X., Upham, J., Deng, X., Altug, H., Vakakis, A.F., Boyd, R.W.: Breaking lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering. Science 356(6344), 1260–1264 (2017). https://doi.org/10.1126/science.aam6662

Vashistha, V., Vaidya, G., Gruszecki, P., Serebryannikov, A.E., Krawczyk, M.: Polarization tunable all-dielectric color filters based on cross-shaped Si nanoantennas. Sci. Rep. 7(1), 1–8 (2017). https://doi.org/10.1038/s41598-017-07986-z

Wu, Y., Xie, P., Ding, Q., Li, Y., Yue, L., Zhang, H., Wang, W.: Magnetic plasmons in plasmonic nanostructures: an overview. J. Appl. Phys. (2023). https://doi.org/10.1063/5.0131903

Xie, Z.T., Sha, Y., Wu, J., Fu, H.Y., Li, Q.: Ultrafast dynamic switching of optical response based on nonlinear hyperbolic metamaterial platform. Opt. Express 30(12), 21634–21648 (2022). https://doi.org/10.1364/oe.457875

Xiong, H., Tang, M.C., Li, M., Li, D., Jiang, Y.N.: Equivalent circuit method analysis of graphene-metamaterial (GM) absorber. Plasmonics 13(3), 857–862 (2018). https://doi.org/10.1007/S11468-017-0581-6/METRICS

Yang, W., Liu, Q., Wang, H., Chen, Y., Yang, R., Xia, S., Luo, Yi., Deng, L., Qin, J., Duan, H., Bi, L.: Observation of optical gyromagnetic properties in a magneto-plasmonic metamaterial. Nat. Commun. 13(1), 1–8 (2022). https://doi.org/10.1038/s41467-022-29452-9

Zhao, L., Wang, N., Hongwei, Fu., Siyao, Yu.: A Novel Tunable optical transmission structure designed by ε-near-zero media filled with multiple nested dielectric dopants. Optik 230, 166297 (2021). https://doi.org/10.1016/j.ijleo.2021.166297

Zhou, B., Li, E., Bo, Y., Wang, A.X.: High-speed plasmonic-silicon modulator driven by epsilon-near-zero conductive oxide. J. Lightwave Technol. 38(13), 3338–3345 (2020). https://doi.org/10.1109/JLT.2020.2979192

Zhou, Y., He, P., Xiao, S., Kang, F., Hong, L., Shen, Y., Xu, J.: Realization of tunable index-near-zero modes in nonreciprocal magneto-optical heterostructures. Opt. Express 30(15), 27259–27272 (2022). https://doi.org/10.1364/oe.461237