Mô hình hóa và Tối ưu hóa Sản xuất Sinh khối Hydro từ Jatropha Không Dầu Sử dụng Phương pháp Bề mặt Phản ứng

Arabian Journal for Science and Engineering - Tập 40 - Trang 15-22 - 2014
Gopalakrishnan Kumar1, Periyasamy Sivagurunathan2, Sang-Hyoun Kim1, Peter Bakonyi3, Chiu-Yue Lin2
1Department of Environmental Engineering, Daegu University, Jillyang, Gyeongsan, Republic of Korea
2Department of Environmental Engineering and Science, Feng Chia University, Taichung City, Taiwan
3Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Veszprem, Hungary

Tóm tắt

Trong nghiên cứu này, quá trình lên men hydro từ chất thải Jatropha không dầu được tối ưu hóa bằng cách sử dụng thiết kế tổ hợp trung tâm. Một loạt các thí nghiệm theo mẻ đã được thực hiện ở các nồng độ chất nền khác nhau (32 – 368 g/L), nhiệt độ (38 – 72°C) và pH (4.8 – 8.2) theo thiết kế thí nghiệm. Các điều kiện tối ưu cho sản xuất hydro tích lũy (CHP) đã được xác định bằng phương pháp bề mặt phản ứng. Nồng độ chất nền tối ưu, giá trị pH và nhiệt độ là 211 g/L, 6.5 và 55.4°C, tương ứng. Dưới các điều kiện này, giá trị CHP tối đa đạt được được dự đoán là 296 mL H2. Để xác thực mô hình, các thí nghiệm xác minh đã được thực hiện. Kết quả cho thấy sự khớp hợp lý với các giá trị ước lượng thống kê với giá trị CHP tối đa đạt 307.4 ± 4.5 mL H2. Phân tích cộng đồng vi sinh vật (PCR-DGGE) đã chỉ ra rằng cộng đồng vi khuẩn chiếm ưu thế là các chủng Clostridium thermopalmarium, Clostridium butyricum, Bacillus ginsengihumi và Bacillus coagulans.

Từ khóa

#Quá trình lên men hydro #Jatropha không dầu #Tối ưu hóa #Phương pháp bề mặt phản ứng #Cộng đồng vi sinh vật

Tài liệu tham khảo

Hallenbeck P.C, Benemen JR.: Biological hydrogen production: fundamentals and limiting process. Int. J. Hydrogen Energy. 27, 1185–1193 (2002) Chakrabarti M.H., Ali M., Usmani J.N., Baroutian S., Saleem M.: Technical evaluation of pongame and Jatropha B20 fuels in Pakistan. Arab. J. Sci. Eng. 38(4), 759–766 (2013) Das D., Veziroglu TN.: Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy. 26, 13–28 (2001) Azarpour A., Suhaimi S., Zahedi G., Bahadori A.: A review on the drawbacks of renewable energy as a promising energy source of the future. Arab. J. Sci. Eng. 38(2), 317–328 (2013) Hallenbeck PC., Ghosh D.: Advances in fermentative biohydrogen production: the way forward?. Trends Biotechnol. 27, 287–297 (2009) Kumar G., Lin C.Y.: Bioconversion of de-oiled Jatropha waste (DJW) to hydrogen and methane gas: influence of substrate concentration, temperature and pH. Int. J. Hydrogen Energy. 38(1), 63–72 (2013) Bansal S.K., Sreekrishnan T.R., Singh R.: Effect of heat treated consortia on fermentative biohydrogen production from vegetable waste. Natl. Acad. Sci. Lett. 36(2), 125–131 (2013) Kumar G., Sen B., Lin C.Y.: Pretreatment and hydrolysis methods for the recovery of fermentable sugars from de-oiled Jatropha waste. Bioresour. Technol. 145, 275–279 (2013) Kumar G., Lay C.H., Chu C.Y., Wu J.H., Lee S.C, Lin C.Y.: Seed inocula for biohydrogen production from biodiesel solid residues. Int. J. Hydrogen Energy. 37(20), 15489–15495 (2012) Endo, G.; Noike T.; Matsumoto T.: Characteristics of cellulose and glucose decomposition in acidogenic phase of anaerobic digestion. Proc. Soc. Civ. Eng. 325, 61-68 (1982, In Japanese) APHA: Standard Methods for the Examination of Water and Wastewater, 19th ed. American Public Health Association New York, USA (1995) Lin C.Y., Chang R.C.: Hydrogen production during the anaerobic acidogenic conversion of glucose. J. Chem. Technol. Biotechnol. 74, 498–500 (1999) Owen W.F., Stuckey D.C., Healy J.B., Young L.Y., MacCarty P.L.: Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water. Res. 13, 485–492 (1979) Chuang Y.S., Lay C.H., Sen B., Chen C.C., Kumar G., Wu J.H., Lin C.S., Lin C.Y.: Biohydrogen and biomethane from water hyacinth (Eichhornia crassipes) fermentation: effects of substrate concentration and incubation temperature. Int. J. Hydrogen Energy. 36(21), 14195–14203 (2011) Kumar, G.; Lin, C.Y.: Biogenic hydrogen conversion of deoiled Jatropha waste via anaerobic sequencing batch reactor operation: process performance, microbial insights and CO2 reduction efficiency. Sci. World J. doi:10.1155/2014/946503 Sivagurunathan P., Sen B., Lin C.Y.: Batch fermentative hydrogen production by enriched mixed culture: combination strategy and their microbial composition. J. BioSci. Bioeng. 117(2), 222–228 (2014) Wang J., Wan W.: Factors influencing fermentative hydrogen production: a review. Int. J. Hydrogen Energy. 34(2), 799–811 (2009) Li C.L., Fang H.H.P.: Fermentative hydrogen production from wastewaters and solid wastes by mixed cultures. Crit. Rev. Env. Sci. Technol. 37, 1–39 (2007) Li Y.C., Wu S.Y., Chu C.Y., Huang H.C.: Hydrogen production from mushroom farm waste with a two step acid hydrolysis process. Int. J. Hydrogen Energy. 36(21), 14245–14251 (2011) Chen C.C, Chuang Y.S., Lin C.Y., Lay C.H., Sen B.: Thermophilic dark fermentation of untreated rice straw using mixed cultures for hydrogen production. Int. J. Hydrogen Energy. 37(20), 15540–15546 (2012) Lee K.S., Lin P.J., Chang J.S.: Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers. Int. J. Hydrogen Energy. 31, 465–472 (2006) Abreu A.A., Danko A.S., Coasta J.C., Ferreira E.C., Alves M.M.: Inoculum type response to different pHs on biohydrogen production from L-arabinose, a component of hemicellulosic biopolymers. Int. J. Hydrogen Energy. 34, 1744–1751 (2009) Liu H., Zhang T., Fang H.H.P.: Thermophilic H2 production from a cellulose containing wastewater. Biotechnol. Lett. 25, 365–369 (2003) Khanna N., Kotay S.M., Gilbert J.J., Das D.: Improvement of biohydrogen production by enterobacter cloacae IIT-BT 08 under regulated pH. J. Biotechnol. 152, 9–15 (2011) Fang H.H.P., Li C., Zhang T.: Acidophilic biohydrogen production from rice slurry. Int. J. Hydrogen Energy. 31(6), 683–692 (2006) Guo W.Q., Ren N.Q., Wang X.J., Xiang W.S., Ding J., You Y., Liu B.F.: Optimization of culture conditions for hydrogen production by Ethanoligenens harbinense B49 using response surface methodology. Bioresour. Technol. 100, 1192–1196 (2009) Chong M.L., Abdul Rahman N., Abdul Rahim R., Abdul Aziz S., Shirai Y., Ali Hassan M.: Optimization of biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent using response surface methodology. Int. J. Hydrogen Energy. 34, 7475–7482 (2009) Kim S.H., Han S.K., Shin H.S.: Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int. J. Hydrogen Energy. 29, 1607–1616 (2004) Mu Y., Wang G., Yu H.Q.: Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures. Enzyme. Microb. Technol. 38, 905–913 (2006) Youn J.H., Shin H.K.: Characteristics of biohydrogen production and microbial community as a function of substrate concentration. Environ. Eng. Res. 10, 7–14 (2005) Geng A., He Y., Qian C., Yan X., Zhou Z.: Effect of key factors on hydrogen production from cellulose in a co culture of Clostridium thermocellum and Clostridium thermopalmurium. Bioresour. Technol. 101(1), 4029–4033 (2010) Oztekin R., Kapdan I., Kargi F., Argun H.: Comparison of hydrogen gas production from hydrolysed wheat starch and glucose by different anaerobic cultures. Int. J. Nat. Sci. Eng. 3(2), 67–72 (2009) Walton S.L., Bischoff K.M, van Heinningen A.R.P., Petervan walsum G.: Production of lactic acid from hemicellulose extracts by Bacillus coagulans MXL9. J. Ind. Microbiol. Biot. 37, 823–830 (2010)