Modeling and Computing of Fractional Convection Equation

Changpin Li1, Qian Yi1
1Department of Mathematics, Shanghai University, Shanghai, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

Angstmann, C.N., Henry, B.I., Jacobs, B.A., McGann, A.V.: A time-fractional generalised advection equation from a stochastic process. Chaos Solitons Fractals 102, 175–183 (2017)

Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36(6), 1403–1412 (2000)

Bouchaud, J.P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195(4), 127–293 (1990)

Celik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231(4), 1743–1750 (2012)

Chen, C.M., Liu, F., Turner, I., Anh, V.: A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227(2), 886–897 (2007)

Diethelm, K., Ford, J.M., Ford, N.J., Weilbeer, M.: Pitfalls in fast numerical solvers for fractional differential equations. J. Comput. Appl. Math. 186, 482–503 (2006)

Ding, H.F., Li, C.P., Chen, Y.Q.: High-order algorithms for Riesz derivative and their applications (I). Abstr. Appl. Anal. 2014, 653797 (2014)

Ding, H.F., Li, C.P., Chen, Y.Q.: High-order algorithms for Riesz derivative and their applications (II). J. Comput. Phys. 293, 218–237 (2015)

Ding, H.F., Li, C.P.: High-order algorithms for Riesz derivative and their applications (III). Fract. Calc. Appl. Anal. 19, 19–55 (2016)

Ding, H.F., Li, C.P.: High-order numerical algorithms for Riesz derivatives via constructing new generating functions. J. Sci. Comput. 71, 759–784 (2017)

Fedotov, S., Iomin, A.: Migration and proliferation dichotomy in tumor-cell invasion. Phys. Rev. Lett. 98(11), 118101 (2007)

Henry, B.I., Langlands, T.A.M., Wearne, S.L.: Fractional cable models for spiny neuronal dendrites. Phys. Rev. Lett. 100(12), 128103 (2007)

Jiang, H., Liu, F., Turner, I., Burrage, K.: Analytical solutions for the multi-term time-space Caputo–Riesz fractional advection–diffusion equations on a finite domain. J. Math. Anal. Appl. 389(2), 1117–1127 (2012)

Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205(2), 719–736 (2005)

Li, C.P., Zeng, F.H.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC Press, Boca Raton, USA (2015)

Li, C.P., Ding, H.F.: Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl. Math. Model. 38(15/16), 3802–3821 (2014)

Li, C.P., Yi, Q., Kurths, J.: Fractional convection. J. Comput. Nonlinear Dynam. 13(1), 011004 (2018)

Li, J., Liu, F., Feng, L., Turner, I.: A novel finite volume method for the Riesz space distributed-order advection–diffusion equation. Appl. Math. Model. 46, 536–553 (2017)

Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)

Metzler, R., Klafter, J.: The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974). (renewed 2002)

Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. 2006, 48391 (2006)

Perdikaris, P., Karniadakis, G.E.: Fractional-order viscoelasticity in one-dimensional blood flow models. Ann. Biomed. Eng. 42(5), 1012–1023 (2014)

Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

Schumer, R., Benson, D.A., Meerschaert, M.M., Wheatcraft, S.W.: Eulerian derivation of the fractional advection–dispersion equation. J. Contam. Hydrol. 48(1), 69–88 (2001)

Shen, S., Liu, F., Anh, V.: Fundamental solution and discrete random walk model for a time-space fractional diffusion equation of distributed order. J. Appl. Math. Comput. 28(1/2), 147–164 (2008)

Shen, S., Liu, F., Anh, V.: Numerical approximations and solution techniques for the space-time Riesz–Caputo fractional advection–diffusion equation. Numer. Algorithms 56(3), 383–403 (2011)

Shen, S., Liu, F., Anh, V., Turner, I., Chen, J.: A novel numerical approximation for the space fractional advection–dispersion equation. IMA J. Appl. Math. 79(3), 431–444 (2014)

Sousa, E.: How to approximate the fractional derivative of order $$1<\alpha \le 2$$. Int. J. Bifurc. Chaos 22(4), 1250075 (2012)

Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34(1), 200–218 (2010)

Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, New York (2005)

Zeng, F.H., Zhang, Z.Q., Karniadakis, G.E.: Second-order numerical methods for multi-term fractional differential equations: smooth and non-smooth solutions. Comput. Methods Appl. Mech. Eng. 327, 478–502 (2017)

Zhang, H., Liu, F., Jiang, X., Zeng, F., Turner, I.: A Crank–Nicolson ADI Galerkin-Legendre spectral method for the two-dimensional Riesz space distributed-order advection–diffusion equation. Comput. Math. Appl. 76, 2460–2476 (2018)