Modeling, analyzing and simulating the dynamics of Lassa fever in Nigeria

Mayowa M. Ojo1, Emile Franc Doungmo Goufo1
1Department of Mathematical Sciences, University of South Africa, Florida, South Africa

Tóm tắt

Abstract

Lassa fever is an infectious and zoonotic disease with incidence ranging between a hundred to three hundred thousand cases, with approximately five thousand deaths reported yearly in West Africa. This disease has become endemic in the Lassa belt of Sub-Saharan Africa, thus increasing the health burden in these regions including Nigeria. A deterministic mathematical model is presented to study the dynamics of Lassa fever in Nigeria. The model describes the transmission between two interacting hosts, namely the human and rodent populations. Using the cumulative number of cases reported by the Nigerian Centre for Disease Control within the first week of January 2020 through the eleventh week in 2021, we performed the model fitting and parameterization using the nonlinear least square method. The reproduction number $${\mathcal {R}}_{0}$$ R 0 which measures the potential spread of Lassa fever in the population is used to investigate the local and global stability of the system. The result shows that the model system is locally and globally asymptomatically stable whenever $${\mathcal {R}}_{0}<1$$ R 0 < 1 , otherwise it is unstable. Furthermore, the endemic equilibrium stability is investigated and the criteria for the existence of the phenomenon of bifurcation is presented. We performed the sensitivity analysis of each reproduction number parameter and solutions of the developed model are derived through an iterative numerical technique, a six-stage fifth-order Runge–Kutta method. Numerical simulations of the total infected human population $$(E_{h}+I_{h})$$ ( E h + I h ) under different numerical values (controlled parameters) are presented. The result from this study shows that combined controlled parameters made the total infected human population decline faster and thus reduces Lassa fever’s burden on the population.

Từ khóa


Tài liệu tham khảo

Peterson, A.T., Moses, L.M., Bausch, D.G.: Mapping transmission risk of Lassa fever in West Africa: the importance of quality control, sampling bias, and error weighting. PLoS ONE 9(8), 100711 (2014)

Ibrahim, M.A., Dénes, A.: A mathematical model for Lassa fever transmission dynamics in a seasonal environment with a view to the 2017–20 epidemic in nigeria. Nonlinear Anal. Real World Appl. 60, 103310 (2021)

Zhao, S., Musa, S.S., Fu, H., He, D., Qin, J.: Large-scale Lassa fever outbreaks in Nigeria: quantifying the association between disease reproduction number and local rainfall. Epidemiol. Infect. 148, 10 (2020)

Gibb, R., Moses, L.M., Redding, D.W., Jones, K.E.: Understanding the cryptic nature of Lassa fever in West Africa. Pathogens Global Health 111(6), 276–288 (2017)

Richmond, J.K., Baglole, D.J.: Lassa fever: epidemiology, clinical features, and social consequences. BMJ 327(7426), 1271–1275 (2003)

Greenky, D., Knust, B., Dziuban, E.J.: What pediatricians should know about Lassa virus. JAMA Pediatr. 172(5), 407–408 (2018)

Mariën, J., Borremans, B., Kourouma, F., Baforday, J., Rieger, T., Günther, S., Magassouba, N., Leirs, H., Fichet-Calvet, E.: Evaluation of rodent control to fight Lassa fever based on field data and mathematical modelling. Emerg. Microbes Infect. 8(1), 640–649 (2019)

Olugasa, B.O., Odigie, E.A., Lawani, M., Ojo, J.F., et al.: Development of a time-trend model for analyzing and predicting case-pattern of Lassa fever epidemics in Liberia, 2013–2017. Ann. Afr. Med. 14(2), 89 (2015)

Musa, S.S., Zhao, S., Gao, D., Lin, Q., Chowell, G., He, D.: Mechanistic modelling of the large-scale Lassa fever epidemics in Nigeria from 2016 to 2019. J. Theor. Biol. 493, 110209 (2020)

Davies, J., Lokuge, K., Glass, K.: Routine and pulse vaccination for Lassa virus could reduce high levels of endemic disease: a mathematical modelling study. Vaccine 37(26), 3451–3456 (2019)

Peter, O.J., Abioye, A.I., Oguntolu, F.A., Owolabi, T.A., Ajisope, M.O., Zakari, A.G., Shaba, T.G.: Modelling and optimal control analysis of Lassa fever disease. Inform. Med. Unlocked 20, 100419 (2020)

Maxmen, A.: Deadly Lassa-fever outbreak tests Nigeria’s revamped health agency. Nature 555, 7697 (2018)

Nigeria Centre for Disease Control: Weekly epidemiological report. Available from https://ncdc.gov.ng/reports/weekly

Onah, I.S., Collins, O.C.: Dynamical system analysis of a Lassa fever model with varying socioeconomic classes. J. Appl. Math. 2020 (2020)

Hamblion, E., Raftery, P., Wendland, A., Dweh, E., Williams, G., George, R., Soro, L., Katawera, V., Clement, P., Gasasira, A., et al.: The challenges of detecting and responding to a Lassa fever outbreak in an Ebola-affected setting. Int. J. Infect. Dis. 66, 65–73 (2018)

Bakare, E., Are, E., Abolarin, O., Osanyinlusi, S., Ngwu, B., Ubaka, O.N.: Mathematical modelling and analysis of transmission dynamics of Lassa fever. J. Appl. Math. 2020 (2020)

Srivastava, H.M., AbuJarad, E.S., Jarad, F., Srivastava, G., AbuJarad, M.H.: The Marichev-Saigo-Maeda fractional-calculus operators involving the (p, q)-extended bessel and bessel-wright functions. Fractal Fract. 5(4), 210 (2021)

Srivastava, H.M., El-Sayed, A., Hashem, H., Al-Issa, S.M.: Analytical investigation of nonlinear hybrid implicit functional differential inclusions of arbitrary fractional orders. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 116(1), 1–19 (2022)

Srivastava, H.M.: Area Carracedo. Power-series solution of compartmental epidemiological models, I.C., Nieto Roig, J.J. (2021)

Singh, H., Srivastava, H.M., Hammouch, Z., Nisar, K.S.: Numerical simulation and stability analysis for the fractional-order dynamics of Covid-19. Results Phys. 20, 103722 (2021)

Goufo, E.F.D.: A biomathematical view on the fractional dynamics of cellulose degradation. Fract. Calc. Appl. Anal. 18(3), 554–564 (2015)

Gbadamosi, B., Ojo, M.M., Oke, S.I., Matadi, M.B.: Qualitative analysis of a dengue fever model. Math. Comput. Appl. 23(3), 33 (2018)

Goufo, E.F.D., Pene, M.K., Mugisha, S.: Stability analysis of epidemic models of Ebola hemorrhagic fever with non-linear transmission. J. Nonlinear Sci. Appl. (JNSA) 9(6), 4191–4205 (2016)

Akinpelu, F., Ojo, M.: A mathematical model for the dynamic spread of infection caused by poverty and prostitution in Nigeria. Int. J. Math. Phys. Sci. Res. 4, 33–47 (2016)

Doungmo Goufo, E.F., Oukouomi Noutchie, S.C., Mugisha, S.: A fractional seir epidemic model for spatial and temporal spread of measles in metapopulations. In: Abstract and Applied Analysis, vol. 2014 (2014). Hindawi

Akinpelu, F., Ojo, M.: Mathematical analysis of effect of isolation on the transmission of Ebola virus disease in a population. Asian Res. J. Math. 1, 1–12 (2016)

Castillo-Chavez, C., Song, B.: Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1(2), 361 (2004)

Oke, S.I., Ojo, M.M., Adeniyi, M.O., Matadi, M.B.: Mathematical modeling of malaria disease with control strategy. Commun. Math. Biol. Neurosci. 2020 (2020)

Ojo, M.M.: Mathematical modeling of Neisseria meningitidis: a case study of Nigeria. Ph.D. thesis, University of Kansas (2019)

Singh, H.: Analysis for fractional dynamics of Ebola virus model. Chaos Solitons Fractals 138, 109992 (2020)

Srivastava, H.M., Saad, K.M., Khader, M.: An efficient spectral collocation method for the dynamic simulation of the fractional epidemiological model of the Ebola virus. Chaos Solitons Fractals 140, 110174 (2020)

Atangana, A., Goufo, E.F.D.: On the mathematical analysis of ebola hemorrhagic fever: deathly infection disease in West African countries. BioMed Res. Int. 2014 (2014)

Goufo, E.F.D., Atangana, A.: On analysis generalization of TB-HIV dynamics by a two-scale reduction process. Results Phys. 30, 104772 (2021)

Dachollom, S., Madubueze, C.E.: Mathematical model of the transmission dynamics of Lassa fever infection with controls. Math. Model Appl. 5, 65–86 (2020)

Fichet-Calvet, E., Rogers, D.J.: Risk maps of Lassa fever in West Africa. PLoS Negl. Trop. Dis. 3(3), 388 (2009)

Ojo, M.M., Gbadamosi, B., Benson, T.O., Adebimpe, O., Georgina, A.: Modeling the dynamics of Lassa fever in Nigeria. J. Egypt. Math. Soc. 29(1), 1–19 (2021)

Viral Hemorrhagic Fever Consortium: Diagnosis and symptoms of Lassa. Available from https://vhfc.org/diseases/lassa/

Lakshmikantham, V., Leela, S., Martynyuk, A.A.: Stability Analysis of Nonlinear Systems. Springer, Berlin (1989)

Ojo, M., Akinpelu, F.: Lyapunov functions and global properties of seir epidemic model. Int. J. Chem. Math. Phys. 1(1), 1 (2017)

Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.: On the definition and the computation of the basic reproduction ratio r 0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28(4), 365–382 (1990)

Diekmann, O., Heesterbeek, J., Roberts, M.G.: The construction of next-generation matrices for compartmental epidemic models. J. R. Soc. Interface 7(47), 873–885 (2010)

Castillo-Chavez, C., Blower, S., Van den Driessche, P., Kirschner, D., Yakubu, A.-A.: Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory, vol. 126. Springer, Berlin (2002)

Central Intelligence Agency: The world factbook. Available from https://www.cia.gov/the-world-factbook/countries/nigeria/

Nigeria Centre for Disease Control: Weekly epidemiological report. Available from https://ncdc.gov.ng/diseases/info/L

Panovska-Griffiths, J.: Can Mathematical Modelling Solve the Current Covid-19 Crisis? Springer, Berlin (2020)

Ojo, M., Gbadamosi, B., Olukayode, A., Oluwaseun, O.R.: Sensitivity analysis of dengue model with saturated incidence rate. Open Access Library J. 5(03), 1 (2018)

Ojo, M., Akinpelu, F.: Sensitivity analysis of Ebola virus model. Asian Research J. Math. 1, 1–10 (2017)

Murray, J.: Mathematical Biology II: Spatial Models and Biomedical Applications, vol. 3. Springer, Berlin (2001)

Polyanin, A.D., Manzhirov, A.V.: Handbook of Mathematics for Engineers and Scientists. CRC Press, Cambridge (2006)