Modeling actuation and sensing in ionic polymer metal composites by electrochemo-poromechanics
Tài liệu tham khảo
Asaka, 2000, Bending of polyelectrolyte membrane platinum composites by electric stimuli: Part II. Response kinetics, J. Electroanal. Chem., 480, 186, 10.1016/S0022-0728(99)00458-1
Asaka, 1995, Bending of polyelectrolyte membrane-platinum composites by electric stimuli I. Response characteristics to various waveforms, Polym. J., 27, 436, 10.1295/polymj.27.436
Ateshian, 2007, On the theory of reactive mixtures for modeling biological growth, Biomech. Model. Mechanobiol., 6, 423, 10.1007/s10237-006-0070-x
Bard, 2001
Biot, 1941, General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155, 10.1063/1.1712886
Bluhm, 2016, Theoretical framework of modeling of ionic EAPs within the Theory of Porous Media, Arch. Appl. Mech., 86, 3, 10.1007/s00419-015-1110-8
Boldini, 2020, On structural theories for ionic polymer metal composites: balancing between accuracy and simplicity, J. Elasticity, 141, 227, 10.1007/s10659-020-09779-4
Boldini, 2020, Multiaxial deformations of ionic polymer metal composites, Internat. J. Engrg. Sci., 149, 10.1016/j.ijengsci.2020.103227
Borukhov, 2000, Adsorption of large ions from an electrolyte solution: a modified Poisson-Boltzmann equation, Electrochim. Acta, 46, 221, 10.1016/S0013-4686(00)00576-4
Bowen, 1980, Incompressible porous media models by use of the theory of mixtures, Internat. J. Engrg. Sci., 18, 1129, 10.1016/0020-7225(80)90114-7
Boyce, 2000, Constitutive models of rubber elasticity: A review, Rubber Chem. Technol., 73, 504, 10.5254/1.3547602
Branco, 2006, Derivation of a continuum model and its electric equivalent-circuit representation for ionic polymer–metal composite (IPMC) electromechanics, Smart Mater. Struct., 15
Carrico, 2015, Fused filament 3D printing of ionic polymer-metal composites (IPMCs), Smart Mater. Struct., 24, 10.1088/0964-1726/24/12/125021
Cha, 2012, A physics-based model of the electrical impedance of ionic polymer metal composites, J. Appl. Phys., 111, 10.1063/1.4729051
Cha, 2014, Mechanics and electrochemistry of ionic polymer metal composites, J. Mech. Phys. Solids, 71, 156, 10.1016/j.jmps.2014.07.006
Chen, 2007, A dynamic model for ionic polymer–metal composite sensors, Smart Mater. Struct., 16, 1477, 10.1088/0964-1726/16/4/063
Chester, 2010, A coupled theory of fluid permeation and large deformations for elastomeric materials, J. Mech. Phys. Solids, 58, 1879, 10.1016/j.jmps.2010.07.020
Coussy, 2004
Del Bufalo, 2008, A mixture theory framework for modeling the mechanical actuation of ionic polymer metal composites, Smart Mater. Struct., 17
Dorfmann, 2005, Nonlinear electroelasticity, Acta Mech., 174, 167, 10.1007/s00707-004-0202-2
Farinholt, 2004, Modeling of electromechanical charge sensing in ionic polymer transducers, Mech. Mater., 36, 421, 10.1016/S0167-6636(03)00069-3
Flory, 1942, Thermodynamics of high polymer solutions, J. Chem. Phys., 10, 51, 10.1063/1.1723621
Gurtin, 2010
Holzapfel, 2000
Hong, 2010, Large deformation and electrochemistry of polyelectrolyte gels, J. Mech. Phys. Solids, 58, 558, 10.1016/j.jmps.2010.01.005
Hong, 2008, A theory of coupled diffusion and large deformation in polymeric gels, J. Mech. Phys. Solids, 56, 1779, 10.1016/j.jmps.2007.11.010
Huggins, 1941, Solutions of long chain compounds, J. Chem. Phys., 9, 440, 10.1063/1.1750930
Huyghe, 1997, Quadriphasic mechanics of swelling incompressible porous media, Internat. J. Engrg. Sci., 35, 793, 10.1016/S0020-7225(96)00119-X
Jo, 2013, Recent advances in ionic polymer-metal composite actuators and their modeling and applications, Prog. Polym. Sci., 38, 1037, 10.1016/j.progpolymsci.2013.04.003
Kim, 2003, Ionic polymer-metal composites: II. Manufacturing techniques, Smart Mater. Struct., 12, 65, 10.1088/0964-1726/12/1/308
Krishna, 1997, The Maxwell-Stefan approach to mass transfer, Chem. Eng. Sci., 52, 861, 10.1016/S0009-2509(96)00458-7
Leichsenring, 2017, Electro-chemical aspects of IPMCs within the framework of the theory of porous media, Smart Mater. Struct., 26, 10.1088/1361-665X/aa590e
Leronni, 2019, Influence of shear on sensing of ionic polymer metal composites, Eur. J. Mech. A, 77, 10.1016/j.euromechsol.2019.02.016
Liu, 2019, A gradient model for young’s modulus and surface electrode resistance of ionic polymer–metal composite, Acta Mech. Solida Sin., 32, 754, 10.1007/s10338-019-00119-1
MacMinn, 2016, Large deformations of a soft porous material, Phys. Rev. Appl., 5, 10.1103/PhysRevApplied.5.044020
Nardinocchi, 2011, Thermodynamically based multiphysic modeling of ionic polymer metal composites, J. Intell. Mater. Syst. Struct., 22, 1887, 10.1177/1045389X11417195
Nemat-Nasser, 2000, Electromechanical response of ionic polymer-metal composites, J. Appl. Phys., 87, 3321, 10.1063/1.372343
Ogden, 1984
Onsager, 1931, Reciprocal relations in irreversible processes. I., Phys. Rev., 37, 405, 10.1103/PhysRev.37.405
Porfiri, 2008, Charge dynamics in ionic polymer metal composites, J. Appl. Phys., 104, 10.1063/1.3017467
Porfiri, 2009, Influence of electrode surface roughness and steric effects on the nonlinear electromechanical behavior of ionic polymer metal composites, Phys. Rev. E, 79, 10.1103/PhysRevE.79.041503
Porfiri, 2017, An alternative explanation of back-relaxation in ionic polymer metal composites, Extreme Mech. Lett., 13, 78, 10.1016/j.eml.2017.01.009
Porfiri, 2018, Modeling back-relaxation in ionic polymer metal composites: The role of steric effects and composite layers, J. Appl. Phys., 123, 10.1063/1.5004573
Pugal, 2010, Ionic polymer-metal composite mechanoelectrical transduction: review and perspectives, Polym. Int., 59, 279, 10.1002/pi.2759
Pugal, 2011, An explicit physics-based model of ionic polymer-metal composite actuators, J. Appl. Phys., 110, 10.1063/1.3650903
Schicker, 2013, Modeling and simulation of the chemo-electro-mechanical behavior of ionic polymer-metal composites, J. Appl. Phys., 114, 10.1063/1.4826070
Shahinpoor, 2001, Ionic polymer-metal composites: I. Fundamentals, Smart Mater. Struct., 10, 819, 10.1088/0964-1726/10/4/327
Shahinpoor, 2004, Ionic polymer-metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers and artificial muscles, Smart Mater. Struct., 13, 1362, 10.1088/0964-1726/13/6/009
Shahinpoor, 2005, Ionic polymer-metal composites: IV. Industrial and medical applications, Smart Mater. Struct., 14, 197, 10.1088/0964-1726/14/1/020
Silberstein, 2010, Constitutive modeling of the rate, temperature, and hydration dependent deformation response of Nafion to monotonic and cyclic loading, J. Power Sources, 195, 5692, 10.1016/j.jpowsour.2010.03.047
Simo, 1984, Remarks on rate constitutive equations for finite deformation problems: computational implications, Comput. Methods Appl. Mech. Engrg., 46, 201, 10.1016/0045-7825(84)90062-8
Tiwari, 2010, Effect of metal diffusion on mechanoelectric property of ionic polymer-metal composite, Appl. Phys. Lett., 97, 10.1063/1.3517447
Tixier, 2020, Validation of a model for an ionic electro-active polymer in the static case, Smart Mater. Struct., 29, 10.1088/1361-665X/ab8fca
Vanag, 2009, Cross-diffusion and pattern formation in reaction–diffusion systems, Phys. Chem. Chem. Phys., 11, 897, 10.1039/B813825G
Volpini, 2021, Asymptotic analysis of compression sensing in ionic polymer metal composites: the role of interphase regions with variable properties, Math. Eng., 3, 1, 10.3934/mine.2021014
Volpini, 2017, Modelling compression sensing in ionic polymer metal composites, Smart Mater. Struct., 26, 10.1088/1361-665X/26/3/035030
Zhang, 2020, Kinetics of Polyelectrolyte Gels, J. Appl. Mech., 87, 10.1115/1.4046737
Zhu, 2013, Multiphysics of ionic polymer-metal composite actuator, J. Appl. Phys., 114
Zhu, 2016, Multi-physical model of cation and water transport in ionic polymer-metal composite sensors, J. Appl. Phys., 119, 10.1063/1.4944647
