Modeling actuation and sensing in ionic polymer metal composites by electrochemo-poromechanics

Journal of the Mechanics and Physics of Solids - Tập 148 - Trang 104292 - 2021
Alessandro Leronni1, Lorenzo Bardella1
1Department of Civil, Environmental, Architectural Engineering and Mathematics (DICATAM), University of Brescia, Via Branze 43, 25123 Brescia, Italy

Tài liệu tham khảo

Asaka, 2000, Bending of polyelectrolyte membrane platinum composites by electric stimuli: Part II. Response kinetics, J. Electroanal. Chem., 480, 186, 10.1016/S0022-0728(99)00458-1 Asaka, 1995, Bending of polyelectrolyte membrane-platinum composites by electric stimuli I. Response characteristics to various waveforms, Polym. J., 27, 436, 10.1295/polymj.27.436 Ateshian, 2007, On the theory of reactive mixtures for modeling biological growth, Biomech. Model. Mechanobiol., 6, 423, 10.1007/s10237-006-0070-x Bard, 2001 Biot, 1941, General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155, 10.1063/1.1712886 Bluhm, 2016, Theoretical framework of modeling of ionic EAPs within the Theory of Porous Media, Arch. Appl. Mech., 86, 3, 10.1007/s00419-015-1110-8 Boldini, 2020, On structural theories for ionic polymer metal composites: balancing between accuracy and simplicity, J. Elasticity, 141, 227, 10.1007/s10659-020-09779-4 Boldini, 2020, Multiaxial deformations of ionic polymer metal composites, Internat. J. Engrg. Sci., 149, 10.1016/j.ijengsci.2020.103227 Borukhov, 2000, Adsorption of large ions from an electrolyte solution: a modified Poisson-Boltzmann equation, Electrochim. Acta, 46, 221, 10.1016/S0013-4686(00)00576-4 Bowen, 1980, Incompressible porous media models by use of the theory of mixtures, Internat. J. Engrg. Sci., 18, 1129, 10.1016/0020-7225(80)90114-7 Boyce, 2000, Constitutive models of rubber elasticity: A review, Rubber Chem. Technol., 73, 504, 10.5254/1.3547602 Branco, 2006, Derivation of a continuum model and its electric equivalent-circuit representation for ionic polymer–metal composite (IPMC) electromechanics, Smart Mater. Struct., 15 Carrico, 2015, Fused filament 3D printing of ionic polymer-metal composites (IPMCs), Smart Mater. Struct., 24, 10.1088/0964-1726/24/12/125021 Cha, 2012, A physics-based model of the electrical impedance of ionic polymer metal composites, J. Appl. Phys., 111, 10.1063/1.4729051 Cha, 2014, Mechanics and electrochemistry of ionic polymer metal composites, J. Mech. Phys. Solids, 71, 156, 10.1016/j.jmps.2014.07.006 Chen, 2007, A dynamic model for ionic polymer–metal composite sensors, Smart Mater. Struct., 16, 1477, 10.1088/0964-1726/16/4/063 Chester, 2010, A coupled theory of fluid permeation and large deformations for elastomeric materials, J. Mech. Phys. Solids, 58, 1879, 10.1016/j.jmps.2010.07.020 Coussy, 2004 Del Bufalo, 2008, A mixture theory framework for modeling the mechanical actuation of ionic polymer metal composites, Smart Mater. Struct., 17 Dorfmann, 2005, Nonlinear electroelasticity, Acta Mech., 174, 167, 10.1007/s00707-004-0202-2 Farinholt, 2004, Modeling of electromechanical charge sensing in ionic polymer transducers, Mech. Mater., 36, 421, 10.1016/S0167-6636(03)00069-3 Flory, 1942, Thermodynamics of high polymer solutions, J. Chem. Phys., 10, 51, 10.1063/1.1723621 Gurtin, 2010 Holzapfel, 2000 Hong, 2010, Large deformation and electrochemistry of polyelectrolyte gels, J. Mech. Phys. Solids, 58, 558, 10.1016/j.jmps.2010.01.005 Hong, 2008, A theory of coupled diffusion and large deformation in polymeric gels, J. Mech. Phys. Solids, 56, 1779, 10.1016/j.jmps.2007.11.010 Huggins, 1941, Solutions of long chain compounds, J. Chem. Phys., 9, 440, 10.1063/1.1750930 Huyghe, 1997, Quadriphasic mechanics of swelling incompressible porous media, Internat. J. Engrg. Sci., 35, 793, 10.1016/S0020-7225(96)00119-X Jo, 2013, Recent advances in ionic polymer-metal composite actuators and their modeling and applications, Prog. Polym. Sci., 38, 1037, 10.1016/j.progpolymsci.2013.04.003 Kim, 2003, Ionic polymer-metal composites: II. Manufacturing techniques, Smart Mater. Struct., 12, 65, 10.1088/0964-1726/12/1/308 Krishna, 1997, The Maxwell-Stefan approach to mass transfer, Chem. Eng. Sci., 52, 861, 10.1016/S0009-2509(96)00458-7 Leichsenring, 2017, Electro-chemical aspects of IPMCs within the framework of the theory of porous media, Smart Mater. Struct., 26, 10.1088/1361-665X/aa590e Leronni, 2019, Influence of shear on sensing of ionic polymer metal composites, Eur. J. Mech. A, 77, 10.1016/j.euromechsol.2019.02.016 Liu, 2019, A gradient model for young’s modulus and surface electrode resistance of ionic polymer–metal composite, Acta Mech. Solida Sin., 32, 754, 10.1007/s10338-019-00119-1 MacMinn, 2016, Large deformations of a soft porous material, Phys. Rev. Appl., 5, 10.1103/PhysRevApplied.5.044020 Nardinocchi, 2011, Thermodynamically based multiphysic modeling of ionic polymer metal composites, J. Intell. Mater. Syst. Struct., 22, 1887, 10.1177/1045389X11417195 Nemat-Nasser, 2000, Electromechanical response of ionic polymer-metal composites, J. Appl. Phys., 87, 3321, 10.1063/1.372343 Ogden, 1984 Onsager, 1931, Reciprocal relations in irreversible processes. I., Phys. Rev., 37, 405, 10.1103/PhysRev.37.405 Porfiri, 2008, Charge dynamics in ionic polymer metal composites, J. Appl. Phys., 104, 10.1063/1.3017467 Porfiri, 2009, Influence of electrode surface roughness and steric effects on the nonlinear electromechanical behavior of ionic polymer metal composites, Phys. Rev. E, 79, 10.1103/PhysRevE.79.041503 Porfiri, 2017, An alternative explanation of back-relaxation in ionic polymer metal composites, Extreme Mech. Lett., 13, 78, 10.1016/j.eml.2017.01.009 Porfiri, 2018, Modeling back-relaxation in ionic polymer metal composites: The role of steric effects and composite layers, J. Appl. Phys., 123, 10.1063/1.5004573 Pugal, 2010, Ionic polymer-metal composite mechanoelectrical transduction: review and perspectives, Polym. Int., 59, 279, 10.1002/pi.2759 Pugal, 2011, An explicit physics-based model of ionic polymer-metal composite actuators, J. Appl. Phys., 110, 10.1063/1.3650903 Schicker, 2013, Modeling and simulation of the chemo-electro-mechanical behavior of ionic polymer-metal composites, J. Appl. Phys., 114, 10.1063/1.4826070 Shahinpoor, 2001, Ionic polymer-metal composites: I. Fundamentals, Smart Mater. Struct., 10, 819, 10.1088/0964-1726/10/4/327 Shahinpoor, 2004, Ionic polymer-metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers and artificial muscles, Smart Mater. Struct., 13, 1362, 10.1088/0964-1726/13/6/009 Shahinpoor, 2005, Ionic polymer-metal composites: IV. Industrial and medical applications, Smart Mater. Struct., 14, 197, 10.1088/0964-1726/14/1/020 Silberstein, 2010, Constitutive modeling of the rate, temperature, and hydration dependent deformation response of Nafion to monotonic and cyclic loading, J. Power Sources, 195, 5692, 10.1016/j.jpowsour.2010.03.047 Simo, 1984, Remarks on rate constitutive equations for finite deformation problems: computational implications, Comput. Methods Appl. Mech. Engrg., 46, 201, 10.1016/0045-7825(84)90062-8 Tiwari, 2010, Effect of metal diffusion on mechanoelectric property of ionic polymer-metal composite, Appl. Phys. Lett., 97, 10.1063/1.3517447 Tixier, 2020, Validation of a model for an ionic electro-active polymer in the static case, Smart Mater. Struct., 29, 10.1088/1361-665X/ab8fca Vanag, 2009, Cross-diffusion and pattern formation in reaction–diffusion systems, Phys. Chem. Chem. Phys., 11, 897, 10.1039/B813825G Volpini, 2021, Asymptotic analysis of compression sensing in ionic polymer metal composites: the role of interphase regions with variable properties, Math. Eng., 3, 1, 10.3934/mine.2021014 Volpini, 2017, Modelling compression sensing in ionic polymer metal composites, Smart Mater. Struct., 26, 10.1088/1361-665X/26/3/035030 Zhang, 2020, Kinetics of Polyelectrolyte Gels, J. Appl. Mech., 87, 10.1115/1.4046737 Zhu, 2013, Multiphysics of ionic polymer-metal composite actuator, J. Appl. Phys., 114 Zhu, 2016, Multi-physical model of cation and water transport in ionic polymer-metal composite sensors, J. Appl. Phys., 119, 10.1063/1.4944647