Modeling Zero Inflation in Count Data Time Series with Bounded Support
Tóm tắt
Từ khóa
Tài liệu tham khảo
Barreto-Souza W (2015) Zero-modified geometric INAR(1) process for modelling count time series with deflation or inflation of zeros. J Time Ser Anal 36(6):839–852
Billingsley P (1961) Statistical inference for Markov processes. Statistical research monographs, University of Chicago Press
Emiliano PC, Vivanco MJF, De Menezes FS (2014) Information criteria: how do they behave in different models? Comput Stat Data Anal 69:141–153
Fox AJ (1972) Outliers in time series. J R Stat Soc B 34(3):350–363
Gonçalves E, Mendes-Lopes N, Silva F (2016) Zero-inflated compound Poisson distributions in integer-valued GARCH models. Statistics 50(3):558–578
Grunwald G, Hyndman RJ, Tedesco L, Tweedie RL (2000) Non-Gaussian conditional linear AR(1) models. Aust N Z J Stat 42(4):479–495
Jazi MA, Jones G, Lai C-D (2012) First-order integer valued processes with zero inflated Poisson innovations. J Time Ser Anal 33(6):954–963
Jung RC, Kukuk M, Liesenfeld R (2006) Time series of count data: modelling and estimation and diagnostics. Comput Stat Data Anal 51(4):2350–2364
McKenzie E (1985) Some simple models for discrete variate time series. Water Resour Bull 21(4):645–650
Möller TA, Silva ME, Weiß CH, Scotto MG, Pereira I (2016) Self-exciting threshold binomial autoregressive processes. AStA Adv Stat Anal 100(4):369–400
Nastić AS, Ristić MM, Miletić Ilić A (2017) A geometric time series model with an alternative dependent Bernoulli counting series. Commun Stat Theory Methods 46(2):770–785
Seneta E (1983) Non-negative matrices and Markov chains, 2nd edn. Springer Verlag, New York
Sirchenko A (2013) A model for ordinal responses with an application to policy interest rate. NBP Working paper No 148
Steutel FW, van Harn K (1979) Discrete analogues of self-decomposability and stability. Ann Probab 7(5):893–899
Weiß CH (2009b) A new class of autoregressive models for time series of binomial counts. Commun Stat Theory Methods 38(4):447–460
Weiß CH, Homburg A, Puig P (2016) Testing for zero inflation and overdispersion in INAR(1) models. Statistical Papers, to appear
Weiß CH, Kim H-Y (2013) Binomial AR (1) processes: moments, cumulants, and estimation. Statistics 47(3):494–510
Weiß CH, Kim H-Y (2014) Diagnosing and modeling extra-binomial variation for time-dependent counts. Appl Stochast Models Bus Ind 30(5):588–608
Weiß CH, Pollett PK (2012) Chain binomial models and binomial autoregressive processes. Biometrics 68(3):815–824
Weiß CH, Pollett PK (2014) Binomial autoregressive processes with density dependent thinning. J Time Ser Anal 35(2):115–132
Weiß CH, Testik MC (2015) On the Phase I analysis for monitoring time-dependent count processes. IIE Trans 47(3):294–306
Zeileis A, Kleiber C, Jackman S (2008) Regression models for count data in R. J Stat Softw 27(8):1–25
Zhu F (2012) Zero-inflated Poisson and negative binomial integer-valued GARCH models. J Stat Plann Infer 142(4):826–839
Zucchini W, MacDonald IL (2009) Hidden markov models for time series: an introduction using R. Chapman and Hall/CRC, London