Modeling, Simulation and Optimization of Power Plant Energy Sustainability for IoT Enabled Smart Cities Empowered With Deep Extreme Learning Machine

IEEE Access - Tập 8 - Trang 39982-39997 - 2020
Sagheer Abbas1, Muhammad Adnan Khan2,1, Luis Eduardo Falcón-Morales3, Abdur Rehman1, Yousaf Saeed4, Mahdi Zareei3, Asim Zeb5, Ehab Mahmoud Mohamed6,7
1Department of Computer Science, National College of Business Administration and Economics, Lahore, Pakistan
2Department of Computer Science, Lahore Garrison University, Lahore, Pakistan
3Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Jalisco, Mexico
4Department of Information Technology, University of Haripur, Khyber Pakhtunkhwa, Pakistan
5Department of Information Technology, Abbotabad University of Science and Technology, Khyber Pakhtunkhwa, Pakistan
6Electrical Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University, Wadi Addwasir, Saudi Arabia
7Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan, Egypt

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1002/er.1095

10.1016/j.energy.2009.12.023

10.3390/en12224352

10.4236/jpee.2018.612002

donnot, 2019, Deep learning methods for predicting flows in power grids Novel architectures and algorithms

dameri, 2012, Defining an evaluation framework for digital cities implementation, Proc IEEE Int 'I SoC Conf, 466

10.1016/j.energy.2006.11.010

rahnama, 2012, Nonlinear identification of a gas turbine system in transient operation mode using neural network, Proc 4th Conf Thermal Power Plants (CTPP), 1

10.1016/j.apenergy.2008.03.018

brown, 2016, Who Needs the Internet of Things?

10.1078/1438-4639-00223

10.1016/j.comnet.2010.05.010

10.1080/00420980050003946

10.1109/HICSS.2012.615

10.1016/j.jksuci.2018.10.011

hall, 2000, The vision of a smart city, 2nd International Life Extension Technology Workshop, 1

giffinger, 2010, Smart cities ranking: An effective instrument for the positioning of the cities, Architecture City & Environ, 4, 7, 10.5821/ace.v4i12.2483

10.1007/s13132-012-0084-9

10.1002/9781119187202.ch7

10.1145/2757384.2757397

10.1109/FUZZ-IEEE.2015.7337951

10.1080/10630732.2014.942092

cheng, 2015, QAPSO-BP algorithm and its application in vibration fault diagnosis for a hydroelectric generating unit, Shock Vib, 34, 177

10.1007/s13042-011-0019-y

10.1162/089976698300017197

kaya, 2012, Local and global learning methods for predicting power of a combined gas & steam turbine, Proc Int Conf Emerg Trends Comput Electron Eng, 13

wallet, 0, A genetic algorithm for best subset selection in linear regression

2014, UCI Machine Learning Repository

10.1007/978-3-319-28373-9_19

10.1109/TIE.2011.2119451

10.1109/JIOT.2016.2584538

10.1007/s10708-013-9516-8

10.1016/j.future.2013.01.010

10.3906/elk-1303-202

abbas, 2011, Bio-inspired neuro-fuzzy based dynamic route selection to avoid traffic congestion, Int J Sci Eng Res, 2, 284

10.14569/IJACSA.2019.0100373

dohler, 2011, Smart cities: An action plan, Proc of the Barcelona Smart Cities Congress, 1

10.4018/978-1-5225-2947-7.ch013

10.1140/epjst/e2012-01703-3

10.1109/JIOT.2014.2306328

10.1109/MC.2011.187

fatima, 2019, Evaluation of planet factors of smart city through multi-layer fuzzy logic (MFL), ISC Int J Inf Security, 11, 51

10.1155/2018/6759526

10.14569/IJACSA.2018.090215

10.1007/978-3-642-20898-0_31

10.1109/EMS.2009.53

10.3390/electronics7100222

10.1109/JPROC.2010.2081330

10.1109/TII.2017.2679740

10.1109/MCOM.2017.1600682CM

10.1109/MCOM.2015.7263375

han, 2015, Learning both weights and connections for efficient neural network, Proc Neural Inf Process Syst, 1135

10.1109/MCOM.2011.6069709

10.1109/MCOM.2018.1700298

10.1109/JIOT.2014.2311513

10.1109/MCOM.2013.6525602