Modeling Present Distribution Commercial Fish and Shrimps Using MaxEnt

Wetlands - Tập 42 - Trang 1-9 - 2022
Sana Sharifian1, Mohammad Seddiq Mortazavi1, Seyedeh Laili Mohebbi-Nozar1
1Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization(AREEO), Bandar Abbas, Iran

Tóm tắt

Most fish and shrimps have valuable ecological and commercial benefits. The difficulties of the collection of distribution records and volatile nature these marine organisms have limited their monitoring and conserving. MaxEnt modeling technique is ideal option for modeling distribution and habitat preference of different marine organisms. In this study, the present distribution of commercial fish and shrimps including orange-spotted grouper John’s snapper, tigertooth croaker, banana and Jinga shrimps was predicted using MaxEnt and a set of environmental layers. Distribution modeling findings showed that this technique reflects well the actual distribution of species. Environmental predictors including iron, calcite, temperature, primary productivity and depth were the most important environmental factors determining the distribution of species. Finding of habitat preferences indicated that the recent habitats of the species have suitable environmental conditions for the species. The Persian Gulf, the Sea of Oman, the North Arabian Sea and Australia coasts of the South Pacific were predicted as the most suitable habitats for species. The finding of this study provided basic data to identify distribution areas and habitat preferences of commercial fish and shrimps for their recent management plans and conservation development.

Tài liệu tham khảo

Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrão EA, De Clerck O (2018) Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob Ecol Biogeogr 27:277–284. https://doi.org/10.1111/geb.12693 Basher Z, Costello MJ (2016) The past, present and future distribution of a deep-sea shrimp in the Southern Ocean. PeerJ 4:e1713. https://doi.org/10.7717/peerj.1713 Basher Z, Bowden DA, Costello MJ (2018) Global marine environment datasets (GMED). World wide web electronic publication. Version 2.0 (rev.02.2018). Accessed at http://gmed.auckland.ac.nz on <access DATE>. [WWW document]. Accessed 12 Oct 2021 Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Pauly D (2009) Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish 10:235–251. https://doi.org/10.1111/j.1467-2979.2008.00315.x Cheung WWL, Lam VWY, Sarimento JL, Kearney K, Watson REG, Zeller D, Pauly D (2010) Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob Chang Biol 16:24–35. https://doi.org/10.1111/j.1365-2486.2009.01995.x Dambach J, Thatje S, Rödder D, Basher Z, Raupach MJ (2012) Effects of late-Cenozoic glaciation on habitat availability in Antarctic benthic shrimps (Crustacea: Decapoda: Caridea). PLoS One 7:e46283 Davies AJ, Guinotte JM (2011) Global habitat suitability for framework-forming cold-water corals. PLoS One 6:e18483. https://doi.org/10.1371/journal.pone.0018483 Drewnik A, Węsławski JM, Włodarska-Kowalczuk M (2017) Benthic Crustacea and Mollusca distribution in Arctic fjord – case study of patterns in Hornsund, Svalbard. Oceanologia 59:565–575. https://doi.org/10.1016/j.oceano.2017.01.005 Farashi A, Shariati M (2017) Biodiversity hotspots and conservation gaps in Iran. J Nat Conserv 39:37–57. https://doi.org/10.1016/j.jnc.2017.06.003 Gaston KJ, Fuller RA (2009) The sizes of species’ geographic ranges. J Appl Ecol 46:1–9. https://doi.org/10.1111/j.1365-2664.2008.01596.x Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AIT, Regan TJ, Brotons L, McDonald-Madden E, Mantyka-Pringle C, Martin TG, Rhodes JR, Maggini R, Setterfield SA, Elith J, Schwartz MW, Wintle BA, Broennimann O, Austin M et al (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435. https://doi.org/10.1111/ele.12189 Hanski I (2011) Habitat loss, the dynamics of biodiversity, and a perspective on conservation. Ambio 40:248–255. https://doi.org/10.1007/s13280-011-0147-3 Harris G, Jenkins C, Pimm S (2005) Refining biodiversity conservation priorities. Conserv Biol 19:1957–1968. https://doi.org/10.1111/j.1523-1739.2005.00307.x Himes-Cornell A, Pendleton L, Atiyah P (2018) Valuing ecosystem services from blue forests: a systematic review of the valuation of salt marshes, sea grass beds and mangrove forests. Ecosyst Serv 30:36–48. https://doi.org/10.1016/j.ecoser.2018.01.006 Hutton T, Pascoe S, Deng RA, Punt AE, Zhou S (2022) Effects of re-specifying the northern prawn fishery bioeconomic model to include banana prawns. Fish Res 247:106190. https://doi.org/10.1016/j.fishres.2021.106190 Jiménez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability of species presence to either–or presence–absence. Acta Oecol 31:361–369. https://doi.org/10.1016/j.actao.2007.02.001 Jones MC, Cheung WWL (2015) Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES J Mar Sci 72:741–752. https://doi.org/10.1093/icesjms/fsu172 Khodanazary A (2019) Freshness assessment of shrimp Metapenaeus affinis by quality index method and estimation of its shelf life. Int J Food Prop. https://doi.org/10.1080/10942912.2019.1580719 Kuhn T, Cunze S, Kochmann J, Klimpel S (2016) Environmental variables and definitive host distribution: a habitat suitability modelling for endohelminth parasites in the marine realm. Sci Rep 6:30246. https://doi.org/10.1038/srep30246 Lassalle G, Crouzet P, Rochard E (2009) Modelling the current distribution of European diadromous fishes: an approach integrating regional anthropogenic pressures. Freshw Biol 54:587–606 Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253. https://doi.org/10.1038/35012251 Meißner K, Fiorentino D, Schnurr S, Martinez Arbizu P, Huettmann F, Holst S, Brix S, Svavarsson J (2014) Distribution of benthic marine invertebrates at northern latitudes ― An evaluation applying multi-algorithm species distribution models. J Sea Res 85:241–254. https://doi.org/10.1016/j.seares.2013.05.007 Mittermeier R, Turner W, Larsen F, Brooks T, Gascon C (2011) Global biodiversity conservation: the critical role of hotspots. In: Biodiversity Hotspots, pp 3–22. https://doi.org/10.1007/978-3-642-20992-5_1 Momenzadeh Z, Khodanazary A, Ghanemi K (2017) Effect of different cooking methods on vitamins, minerals and nutritional quality indices of orange-spotted grouper (Epinephelus coioides). J Food Meas Charact 11:434–441. https://doi.org/10.1007/s11694-016-9411-3 Olden JD, Jackson DA (2002) A comparison of statistical approaches for modelling fish species distributions. Freshw Biol 47:1976–1995. https://doi.org/10.1046/j.1365-2427.2002.00945.x Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JPW, Fernandez-Manjarrés JF, Araújo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guénette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C et al (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501. https://doi.org/10.1126/science.1196624 Peterson A, Soberón J, Pearson R, Anderson R, Martínez-Meyer E, Nakamura M, Araújo M (2011) Ecological niches and geographic distributions. Monogr Popul Biol. https://doi.org/10.1515/9781400840670 Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography (Cop) 31:161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017) Opening the black box: an open-source release of Maxent. Ecography (Cop) 40:887–893. https://doi.org/10.1111/ecog.03049 Pickens B, Carroll R, Schirripa MJ, Francesca F, Friedland KD, Christopher TJ (2021) A systematic review of spatial habitat associations and modeling of marine fish distribution: a guide to predictors, methods, and knowledge gaps. PLoS One 5:1–21 Pineda E, Lobo JM (2009) Assessing the accuracy of species distribution models to predict amphibian species richness patterns. J Anim Ecol 78:182–190. https://doi.org/10.1111/j.1365-2656.2008.01471.x Putra MIH, Mustika PLK (2021) Maximum entropy model: estimating the relative suitability of cetacean habitat in the northern Savu Sea, Indonesia. Mar Mammal Sci 37:6–28. https://doi.org/10.1111/mms.12719 Renuka V, Zynudheen AA, Panda SK, Ravishankar CNR (2016) Nutritional evaluation of processing discards from tiger tooth croaker, Otolithes ruber. Food Sci Biotechnol 25:1251–1257. https://doi.org/10.1007/s10068-016-0198-0 Rhoden CM, Peterman WE, Taylor CA (2017) Maxent-directed field surveys identify new populations of narrowly endemic habitat specialists. PeerJ 5:e3632. https://doi.org/10.7717/peerj.3632 Robinson NM, Nelson WA, Costello MJ, Sutherland JE, Lundquist CJ (2017) A systematic review of marine-based species distribution models (SDMs) with recommendations for best practice. Front Mar Sci 4:421. https://doi.org/10.3389/fmars.2017.00421 Saeedi H, Basher Z, Costello MJ (2016) Modelling present and future global distributions of razor clams (Bivalvia: Solenidae). Helgol Mar Res 70:23. https://doi.org/10.1186/s10152-016-0477-4 Schmiing M, Afonso P, Tempera F, Santos RS (2013) Predictive habitat modelling of reef fishes with contrasting trophic ecologies. Mar Ecol Prog Ser 474:201–216 Serpetti N, Baudron AR, Burrows MT, Payne BL, Helaouët P, Fernandes PG, Heymans JJ (2017) Impact of ocean warming on sustainable fisheries management informs the ecosystem approach to fisheries. Sci Rep 7:13438. https://doi.org/10.1038/s41598-017-13220-7 Sharifian S, Zakipour E, Mortazavi M, Arshadi A (2011) Quality assessment of Tiger tooth croaker (Otolithes ruber) during ice storage. Int J Food Prop 14:309–318. https://doi.org/10.1080/10942910903177822 Sharifian S, Kamrani E, Saeedi H (2020) Global biodiversity and biogeography of mangrove crabs: temperature, the key driver of latitudinal gradients of species richness. J Therm Biol 92:102692. https://doi.org/10.1016/j.jtherbio.2020.102692 Sharifian S, Kamrani E, Saeedi H (2021a) Global future distributions of mangrove crabs in response to climate change. Wetlands 41:99. https://doi.org/10.1007/s13157-021-01503-9 Sharifian S, Kamrani E, Saeedi H (2021b) Insights toward the future potential distribution of mangrove crabs in the Persian Gulf and the sea of Oman. J Zool Syst Evol Res 1–12. https://doi.org/10.1111/jzs.12532 Sheridan P, Hays C (2003) Are mangroves nursery habitat for transient fishes and decapods? Wetlands 23:449–458. https://doi.org/10.1672/19-20 Snelgrove P, Berghe EV, Miloslavich P, Archambault P, Bailly N, Brandt A (2016) Global patterns in marine biodiversity, in: first global marine assessment. United Nations, p. 37pp Squalli J (2020) Evaluating the potential economic, environmental, and social benefits of orange-spotted grouper aquaculture in the United Arab Emirates. Mar Policy 118:103998. https://doi.org/10.1016/j.marpol.2020.103998 Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, De Clerck O (2012) Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob Ecol Biogeogr 21:272–281. https://doi.org/10.1111/j.1466-8238.2011.00656.x Urcádiz-Cázares FJ, Cruz-Escalona VH, Peterson MS, Marín-Enriquez E, González-Acosta AF, Martínez-Flores G, Hernández-Carmona GH, Aguilar-Medrano R, Del Pino-Machado A, Ortega-Rubio A (2021) Ecological niche modelling of endemic fish within La Paz Bay: implications for conservation. J Nat Conserv 60:125981. https://doi.org/10.1016/j.jnc.2021.125981 Yu C, Ngoprasert D, Savini T, Round PD, Gale GA (2020) Distribution modelling of the endangered spotted greenshank (Tringa guttifer) in a key area within its winter range. Glob Ecol Conserv 22:e00975. https://doi.org/10.1016/j.gecco.2020.e00975 zu Ermgassen PSE, Mukherjee N, Worthington TA, Acosta A, Rocha Araujo AR d, Beitl CM, Castellanos-Galindo GA, Cunha-Lignon M, Dahdouh-Guebas F, Diele K, Parrett CL, Dwyer PG, Gair JR, Johnson AF, Kuguru B, Savio Lobo A, Loneragan NR, Longley-Wood K, Mendonça JT et al (2020) Fishers who rely on mangroves: modelling and mapping the global intensity of mangrove-associated fisheries. Estuar Coast Shelf Sci 247:106975. https://doi.org/10.1016/j.ecss.2020.106975