Modeling Oxidation Kinetics of SiC‐Containing Refractory Diborides

Journal of the American Ceramic Society - Tập 95 Số 1 - Trang 338-349 - 2012
T. A. Parthasarathy1,2, Robert A. Rapp3, Mark M. Opeka4, Michael K. Cinibulk1
1Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio, 45433-7817
2UES Inc., Dayton, Ohio 45432
3The Ohio State University, Columbus, Ohio 43235
4Naval Surface Warfare Center, Carderock, Maryland 20817

Tóm tắt

Experimental data on the oxidation kinetics of SiC‐containing diborides of Zr and Hf in the temperature regime of 1473–2273 K are interpreted using a mechanistic model. The model encompasses counter‐current gas diffusion in the internal SiC depleted zone, oxygen permeation through borosilicate glass channels in the oxide scale, and boundary layer evaporation at the surface. The model uses available viscosity, thermodynamic and kinetic data for boria, silica, and borosilicate glasses, and a logarithmic mean approximation for compositional variations. The internal depletion region of SiC is modeled with CO/CO2 counter diffusion as the oxygen transport mechanism. Data reported for pure SiC in air/oxygen, for ZrB2 containing varying volume fractions of SiC, and for SiC–HfB2 ultra‐high temperature ceramics (UHTCs) by different investigations were compared with quantitative predictions of the model. The model is found to provide good correspondence with laboratory‐furnace‐based experimental data for weight gain, scale thicknesses, and depletion layer thicknesses. Experimental data obtained from arc‐jet tests at high enthalpies are found to fall well outside the model predictions, whereas lower enthalpy data were closer to model predictions, suggesting a transition in mechanism in the arc‐jet environment.

Từ khóa


Tài liệu tham khảo

10.1023/B:JMSC.0000041686.21788.77

10.1016/S0955-2219(99)00129-6

10.1023/B:JMSC.0000041690.06117.34

10.1023/B:JMSC.0000041693.32531.d1

10.1016/S0955-2219(02)00140-1

10.1016/j.compscitech.2005.04.003

10.1111/j.1551-2916.2006.01329.x

10.1016/j.jeurceramsoc.2006.10.012

10.1016/j.corsci.2004.09.019

10.1111/j.1551-2916.2009.03134.x

10.1007/s10853-009-3799-7

10.1016/j.jeurceramsoc.2010.04.019

10.1002/9780470294680.ch27

10.1557/JMR.2008.0251

10.1111/j.1744-7402.2011.02647.x

10.1111/j.1551-2916.2008.02660.x

10.1111/j.1551-2916.2008.02639.x

10.1111/j.1551-2916.2008.02874.x

10.4028/www.scientific.net/KEM.434-435.144

Sevener K., 2007, Oxidation of HfB2‐SiC Ultra‐High Temperature Ceramics at 1500°C ‐ 1600°C

10.1023/B:JMSC.0000041693.32531.d1

10.1016/j.actamat.2007.07.027

10.4028/www.scientific.net/MSF.595-598.823

10.1111/j.1551-2916.2009.03031.x

10.1149/1.1618226

10.1007/BF00665261

10.1111/j.1151-2916.1991.tb04348.x

10.1111/j.1151-2916.1993.tb04020.x

Kawamoto Y., 1983, Absence of Phase Separation in the System Boron Oxide‐Silica, Glastech. Ber., 56, 782

Kays W. M., 1980, Convective Heat and Mass Transfer, 139

Perry R. H., 1973, Chemical Engineers’ Handbook

10.1002/9783527619825

R. A.Svehla “Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures”; inNASATech report R‐132 Washington DC 1962.

Kawamoto T., 1980, Absence of Phase Separation in the System Boron Oxide‐Silica, Glastch. Ber., 56, 782

10.1111/j.1151-2916.1966.tb13202.x

10.1111/j.1151-2916.1962.tb11085.x

10.1063/1.1515132

10.1016/0016-7037(82)90059-X

Hetherington G., 1964, The Viscosity of Vitreous Silica, Phys. Chem. Glasses, 5, 130

Fluegel A., 2007, Glass Viscosity Calculation Based on a Global Statistical Modelling Approach, Eur. J. Glass Sci. Tech., A, 48, 13

10.1016/j.jnoncrysol.2009.03.005

Tokuda T., 1971, Z Natuforschung, 26, 2058

10.1016/0008-6223(88)90040-1

10.1016/0022-3093(84)90396-X

10.1016/0955-2219(92)90010-B

10.1002/9780470313848.ch9

10.1111/j.1151-2916.2001.tb01061.x

10.1111/j.1151-2916.1996.tb08724.x

10.1111/j.1151-2916.1986.tb07470.x

10.1111/j.1551-2916.2006.01241.x

10.1149/1.2086568

10.1111/j.1151-2916.1975.tb18969.x

10.1149/1.2048559

Talmy I., 2005, Effect of SiC Content on Oxidation Kinetics of SiC‐ZrB2

10.1016/j.jeurceramsoc.2007.02.201

10.1016/j.ast.2009.12.004

10.1016/j.jeurceramsoc.2010.01.010

Rogers B. R., 2004, The Effect of Dissociated Oxygen on the Oxidation of Si, Polycrystalline SiC and LPCVD Si3N4, High Temp. Corr. Mater. Chem., 2004, 268

10.2514/1.39970

10.1111/j.1551-2916.2008.02319.x