Modeling Nicotine Arterial–Venous Differences to Predict Arterial Concentrations and Input Based on Venous Measurements: Application to Smokeless Tobacco and Nicotine Gum
Tóm tắt
Từ khóa
Tài liệu tham khảo
D. Verotta, S. Beal, and L. B. Sheiner. Semiparametric approach to pharmacokinetic-pharmacodynamic data. Am. J. Physiol. 256:R1005–R1010 (1989).
W. L. Chiou. The phenomenon and rationale of marked dependence of drug concentration on blood sampling site: implications in pharmacokinetics, pharmacodynamics, toxicology, and therapeutics [part I]. Clin. Pharmacokin. 17:175–199 (1989).
W. L. Chiou. The phenomenon and rationale of marked dependence of drug concentration on blood sampling site: implications in pharmacokinetics, pharmacodynamics, toxicology, and therapeutics [part II]. Clin. Pharmacokin. 17:275–290 (1989).
B. Tuk, V. M. M. Herben, J. W. Mandema, and M. Danhof. Relevance of arteriovenous concentration differences in pharmacokinetic-pharmacodynamic modeling of midazolam. J. Pharmacol. Exp. Ther. 284:202–207 (1998).
S. G. Gourlay and N. L. Benowitz. Arteriovenous differences in plasma concentration of nicotine and catecholamines and related cardiovascular effects after smoking, nicotine nasal spray, and intravenous nicotine. Clin. Pharmacol. Therapeut. 62:453–463 (1997).
J. E. Henningfield, J. M. Stapleton, N. L. Benowitz, R. F. Grayson, and E. D. London. Higher levels of nicotine in arterial than in venous blood after cigarette smoking. Drug and Alcohol Dependence 33:23–29 (1993).
N. L. Benowitz, H, Porchet, L. Sheiner, and J. Peyton. Nicotine absorption and cardiovascular effects with smokeless tobacco use: comparison with cigarettes and nicotine gum. Clin. Pharmacol. Therapeut. 44:23–28 (1988).
H. C. Porchet, N. L. Benowitz, L. B. Sheiner, and J. R. Copeland. Apparent tolerance to the acute effect of nicotine results in part from distribution kinetics. J. Clin. Inûest. 80:1466–1471 (1987).
K. O. Fagerstrom. Measuring degree of physical dependence to tobacco smoke with reference to individualization of treatment. Addic. Behaû. 3:235–241 (1978).
P. Jacob, L. Yu, M. Wilson, and N. L. Benowitz. Selected ion monitoring method for determination of nicotine, cotinine and deuterium-labeled analogs-absence of an isotope effect in the clearance of (s)-nicotine-3´,3´-d2 in humans. Biol. Mass Spectro. 20:247–252 (1991).
N. L. Benowitz, K. Chan, C. P. Denaro, and P. Jacob, III. Stable isotope method for studying transdermal drug absorption: the nicotine patch. Clin. Pharmacol. Therapeut. 50:286–293 (1991).
D. Verotta. Concepts, properties, and applications of linear systems to describe the distribution, identify input, and control endogenous substances and drugs in biological systems. Crit. Reû. Bioeng. 24:73–139 (1996).
E. J. Hannan. Rational transfer function approximation. Statist. Sci. 2:1029–1054 (1987).
H. Akaike. A new look at the statistical model identification problem. IEEE Trans. Automat. Contr. 19:716–723 (1974).
S. L. Beal and L. B. Sheiner. NONMEM Users Guide, Part VII: Conditional Estimation Methods, Division of Clinical Pharmacology, University of California at San Francisco, 1992.
K. E. Fattinger and D. Verotta. A non-parametric subject-specific population method for deconvolution. II. External validation. J. Pharmacokin. Biopharm. 23:611–634 (1996).
D. Verotta. Drug Dynamics Modeling (DDM), A Nonparametric Approach.V1.0, User Guide, Technical Report, School of Pharmacy, University of California at San Francisco, 1999, in preparation.
S-PLUS, Statistical Science Inc. Seattle, WA, 1991.
D. Verotta. An inequality-constrained least-squares deconvolution method. J. Pharmacokin. Biopharm. 17:269–289 (1989).