Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Mô hình hóa sự phát triển của Euglena sp. dưới các điều kiện khác nhau bằng cách sử dụng mạng nơ-ron nhân tạo
Tóm tắt
Vi tảo vi được coi là nguồn năng lượng sinh học của tương lai do năng suất sinh khối cao và hàm lượng lipid trung tính dưới dạng triacylglyceride (TAG). Vi tảo vi có hiệu suất quang hợp cao và khả năng được nuôi trồng trong các loại nước thải khác nhau. Việc phân lập các loài vi tảo tiềm năng, kèm theo việc tối ưu hóa các điều kiện nuôi trồng, là điều kiện tiên quyết cho sự phát triển thành công và tích lũy hàm lượng lipid cao. Trong công trình hiện tại, một mô hình mạng nơ-ron nhân tạo (ANN) ba lớp đã được phát triển để dự đoán các tham số thiết yếu (như pH, nhiệt độ, cường độ ánh sáng, chu kỳ ánh sáng và thành phần môi trường) dựa trên 156 bộ thí nghiệm trong phòng thí nghiệm nhằm đạt được sinh khối tối đa từ Euglena sp. Các tham số độc lập (cụ thể là nhiệt độ, cường độ ánh sáng, chu kỳ ánh sáng và số ngày tại pH cố định cùng với thành phần của môi trường) được đưa vào mô hình ANN, và năng suất sinh khối được nghiên cứu. Sự so sánh các điều kiện môi trường được mô phỏng bằng mô hình ANN với kết quả thực nghiệm cho thấy một hệ số tương quan tuyệt vời khoảng 0.97 cho các biến của mô hình được sử dụng trong nghiên cứu này. Kết quả từ mô hình cho thấy thiết kế mạng nơ-ron nhân tạo có thể được áp dụng một cách hợp lý để tối ưu hóa các điều kiện môi trường khác nhau cho loài vi tảo đã được phân lập này.
Từ khóa
#vi tảo vi #Euglena sp. #mạng nơ-ron nhân tạo #sinh khối #lipid #tối ưu hóa #điều kiện môi trườngTài liệu tham khảo
Abdelaziz AE, Leite GB, Hallenbeck PC (2013) Addressing the challenges for sustainable production of algal biofuels: I. Algal strains and nutrient supply. Environ Technol 34(1783):1805
Bartley ML, Boeing WJ, Dungan BN, Holguin FO, Schaub T (2014) pH effects on growth and lipid accumulation of the biofuel microalgae, Nannochloropsis salina, and invading organisms. J Appl Phycol 26:1431–1437
Benjamas C, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol 110:510–516
Bonnefond H, Moelants N, Talec A, Bernard O, Sciandra A (2016) Concomitant effects of light and temperature diel variations on the growth rate and lipid production of Dunaliella salina. Algal Res 14:72–78
Borowitzka MA (2016) Algal physiology and large-scale outdoor cultures of microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 601–652
Camacho FG, Rosales LL, Mirona AS, Belarbi EH, Chisti Y, Grima EM (2016) Artificial neural network modeling for predicting the growth of the microalga Karlodinium veneficum. Algal Res 14:58–64
Chen GQ, Jiang Y, Chen F (2008) Variation of lipid class composition in Nitzschia laevis as a response to growth temperature change. Food Chem 109:88–94
Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306
Chu FF, Chu PN, Shen XF, Lam PK, Zeng RJ (2014) Effect of phosphorus on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress. Biorsour Technol 152:241–246
Converti A, Casazza AA, Ortiz EY, Perego P, Borghi MD (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process Process Intensif 48:1146–1151
Danilov RA, Ekelund NGA (2001) Effects of pH on the growth rate, motility and photosynthesis in Euglena gracilis. Folia Microbiol 46:549–554
Das D, Kundu M (2011) Identification of algal biomass production with partial least squares & neural network. Int J Chem Eng Appl 2:288–293
Doan TTY, Balasubramanian S, Obbard JP (2011) Screening of marine microalgae for biodiesel feedstock. Biomass Bioeng 35:2534–2544
Feller U, Brandner SJC, Salvucci ME (1998) Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiol 116:539–546
George B, Pancha I, Desai C, Chokshi K, Paliwal C, Ghosh T, Mishra S (2014) Effects of different media composition, light intensity, and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus—a potential strain for bio-fuel production. Bioresour Technol 17:1367–1374
Goh ATC (1995) Back-propagation neural networks for modeling complex systems. Artif Intell Eng 9:143–151
Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507
Grima EM, Sevilla JMF, Perez JAS, Camacho FG (1996) A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances. J Biotechnol 45:59–69
He Q, Yang H, Wu L, Hu C (2015) Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresour Technol 191:219–228
Hewes CD (2016) Timing is everything: optimizing crop yield for Thalassiosira pseudonana (Bacillariophyceae) with semi-continuous culture. J Appl Phycol 28:3213–3223
Ji F, Hao R, Liu Y, Li G, Zhou Y, Dong R (2013) Isolation of a novel microalgae strain Desmodesmus sp. and optimization of environmental factors for its biomass production. Bioresour Technol 148:249–254
Karpagam R, Raj KJ, Balasubramaniem AK, Varalakshmi P (2015) Characterization and fatty acid profiling in two fresh water microalgae for biodiesel production: lipid enhancement methods and media optimization using response surface methodology. Bioresour Technol 188:177–184
Khataee AR, Dehghan G, Ebadi A, Zarei M, Pourhassan M (2010) Biological treatment of a dye solution by macroalgae Chara sp.: effect of operational parameters, intermediate identification and artificial neural network modeling. Bioresour Technol 101:2252–2258
Kishore G, Kadam AD, Daverey A, Arunachalam K (2017) Isolation and evaluation of cultivation conditions of Euglena sp. from Western Himalaya for biofuel production. Biofuels. https://doi.org/10.1080/17597269.2017.1327169
Li Y, Chen YF, Chen P, Min M, Zhou W, Martinez B, Zhu J, Ruan R (2011) Characterization of a microalgae Chlorella sp. well adapted to highly concentrated municipal wastewater in nutrient removal and biodiesel production. Bioresour Technol 102:5138–5144
Liu A, Chen W, Zheng LL, Song LR (2011) Identification of high lipid producers for biodiesel production from forty three green algal isolates in China. Prog Natrl Sci: Mater Int 21:269–276
Liu C, Subashchandrabose S, Ming H, Xiao B, Naidu R, Megharaj M (2016) Phycoremediation of dairy and winery wastewater using Diplosphaera sp. MM1. J Appl Phycol 28:3331–3341
Lukeš M, Giordano M, Prášil O (2017) The effect of environmental factors on fatty acid composition of Chromera velia (Chromeridae). J Appl Phycol 29:1791–1799
Mahapatra DM, Chanakya HN, Ramachandra TV (2013) Euglena sp. as a suitable source of lipids for potential use as biofuel and sustainable wastewater treatment. J Appl Phycol 25:855–865
Mata MT, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232
McNelis PD (2005) Neural networks in finance : gaining predictive edge in the market. Elsevier Academic Press, First Edn
Moheimani NR, Borowitzka MA (2011) Increased CO2 and the effect of pH on growth and calcification of Pleurochrysis carterae and Emiliania huxleyi (Haptophyta) in semicontinuous cultures. Appl Microbiol Biotechnol 90:399–1407
Moon NJ (1983) I hibition of the growth of acid tolerant yeasts by acetate, lactate and propionate and their synergistic mixtures. J Appl Bacteriol 55:453–460
Nascimento MD, Dublan M, Ortiz-Marquez JCF, Curatti L (2013) High lipid productivity of an Ankistrodesmus–Rhizobium artificial consortium. Bioresour Technol 146:400–407
Nath K, Das D (2011) Modeling and optimization of fermentative hydrogen production. Bioresour Technol 102:8569–8858
Olden JD, Jackson DA (2002) Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks. Ecol Model 154:135–150
Pappu JSM, Vijayakumar GK, Ramamurthy V (2013) Artificial neural network model for predicting production of Spirulina platensis in outdoor culture. Bioresour Technol 130:224–230
Press BPFWH, Teukolsky SA, Vetterling WT (2007) Numerical recipes : the art of scientific computing, Third Edn. Cambridge University Press, Cambridge
Rawat I, Kumar R, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424
Richardson K, Beardall J, Raven JA (1983) Adaptation of unicellular algae to irradiance. An analysis of strategies. New Phytol 93:157–191
Richmond A (2004) Biological principles of mass cultivation. In: Richmond A (ed) Handbook of microalgal cultures. Biotechnology and applied phycology. Blackwell Science, Oxford, pp 125–177
Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici M (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low cost photobioreactor. Biotechnol Bioeng 102:100–112
López-Rosales L, Gallardo-Rodríguez JJ, Sánchez-Mirón A, Contreras-Gómez A, García-Camacho F, Molina-Grima E (2013) Modelling of multi-nutrient interactions in growth of the dinoflagellate microalga Protoceratium reticulatum using artificial neural networks. Bioresour Technol 146:682–688
Ruangsomboon S (2015) Effects of different media and nitrogen sources and levels on growth and lipid of green microalga Botryococcus braunii KMITL and its biodiesel properties based on fatty acid composition. Bioresour Technol 191:377–384
Shen Y, Yang T, Zhu W, Zhao Y (2017) Wastewater treatment and biofuel production through attached culture of Chlorella vulgaris in a porous substratum biofilm reactor. J Appl Phycol 29:833–841
Smith VH, Sturm BSM, de Noyelles FJ, Billings SA (2009) The ecology of algae biodiesel production. Trends Ecol Evol 25:301–309
Soletto D, Binaghi L, Ferrari L, Lodi A, Carvalho JCM, Zilli M, Converti A (2008) Effects of carbon dioxide feeding rate and light intensity on the fed-batch pulse feeding cultivation of Spirulina platensis in helical photobioreactor. Biochem Eng J 39:369–375
Wahidin S, Idris A, Shaleh SRM (2013) The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresour Technol 129:7–11
Wei B, Sugiura N, Maekawa T (2001) Use of artificial neural network in the prediction of algal blooms. Water Res 35:2022–2028
Yadavalli R, Rao CS, Rao RS, Potumarthi R (2014) Dairy effluent treatment and lipids production by Chlorella pyrenoidosa and Euglena gracilis: study on open and closed systems. Asia Pac J Chem Eng 9:368–373
