Modeling Channel Forms and Related Sedimentary Objects Using a Boundary Representation Based on Non-uniform Rational B-Splines
Tóm tắt
This paper aims at providing a flexible and compact volumetric object model capable of representing many sedimentary structures at different scales. Geobodies are defined by a boundary representation; each bounding surface is constructed as a parametric deformable surface. A three-dimensional sedimentary object with a compact parametrization which allows for representing various geometries and provides a curvilinear framework for modeling internal heterogeneities is proposed. This representation is based on non-uniform rational basis splineswhich smoothly interpolate between a set of points. The three-dimensional models of geobodies are generated using a small number of parameters, and hence can be easily modified. This can be done by a point and click user interaction for manual editing or by a Monte-Carlo sampling for stochastic simulation. Each elementary shape is controlled by deformation rules and has connection constraints with associated objects to maintain geometric consistency through editing. The boundary representations of the different sedimentary structures are used to construct hexahedral conformal grids to perform petrophysical property simulations following the particular three-dimensional parametric space of each object. Finally these properties can be upscaled, according to erosion rules, to a global grid that represents the global depositional environment.
Tài liệu tham khảo
Abrahamsen P, Fjellvoll B, Hauge R (2007) Process based stochastic modelling of deep marine reservoirs. In: EAGE petroleum geostatistics
Abreu V, Sullivan M, Pirmez C, Mohrig D (2003) Lateral accretion packages (laps): an important reservoir element in deep water sinuous channels. Mar Pet Geol 20(6):631–648
Allen JR (1963) The classification of cross-stratified units. With notes on their origin. Sedimentology 2(2):93–114
Alpak FO, Barton MD, Naruk SJ (2013) The impact of fine-scale turbidite channel architecture on deep-water reservoir performance. AAPG Bull 97(2):251–284. doi:10.1306/04021211067
Arnott R (2010) Deep-marine sediments and sedimentary systems. In: James N, Dalrymple R (eds) Facies model 4. St. John’s: Geological Association of Canada, pp 295–322
Bertoncello A, Caers JK, Biver P, Caumon G (2008) Geostatistics on stratigraphic grids. In: Ortiz J, Emery X (eds) Proc. eighth geostatistical geostatistics congress, vol 2. Gecamin ltd, pp 677–686
Bertoncello A, Sun T, Li H, Mariethoz G, Caers J (2013) Conditioning surface-based geological models to well and thickness data. Math Geosci 45(7):873–893
Bhattacharya J (2010) Deltas. In: James N, Dalrymple R (eds) Facies model 4. St. John’s: Geological Association of Canada, pp 233–264
Boisvert JB, Pyrcz MJ, Deutsch CV (2007) Multiple-point statistics for training image selection. Nat Resour Res 16(4):313–321
Comunian A, Jha SK, Giambastiani BM, Mariethoz G, Kelly BF (2014) Training images from process-imitating methods. Math Geosci 46(2):241–260
Desbarats A (1987) Numerical estimation of effective permeability in sand–shale formations. Water Resour Res 23(2):273–286
Deutsch CV, Wang L (1996) Hierarchical object-based stochastic modeling of fluvial reservoirs. Math Geol 28(7):857–880
Deutsch C, Tran T (2002) Fluvsim: a program for object-based stochastic modeling of fluvial depositional systems. Comput Geosci 28(4):525–535
Deutsch C, Tran T (2004) Simulation of deepwater lobe geometries with object based modelling: Lobesim. Tech. rep., Tech. rep., University of Alberta. http://www.uofaweb.ualberta.ca/ccg//pdfs/1999%2004-LobeModeling1.pdf. Accessed 7 Dec 2015
Durlofsky LJ (2005) Upscaling and gridding of fine scale geological models for flow simulation. In: 8th international forum on reservoir simulation, Borromees Island, pp 20–24
Fisher T, Wales R (1992) Rational splines and multidimensional geologic modeling. In: Pflug R, Harbaugh J (eds) Computer graphics in geology, vol 41., Lecture notes in earth sciencesSpringer, Berlin, pp 17–28
Gai X, Wu Xh, Branets L, Sementelli K, Robertson G (2012) Concept-based geologic modeling using function form representation. In: Abu Dhabi international petroleum conference and exhibition
Google Earth (2012) Atchafalaya delta 29\(^\circ \)O
Graham GH, Jackson MD, Hampson GJ (2015) Three-dimensional modeling of clinoforms in shallow-marine reservoirs: part 1. Concepts and application. AAPG Bull 99(06):1013–1047. doi:10.1306/01191513190
Haldorsen H, Lake L (1984) A new approach to shale management in field-scale models. Old SPE J 24(4):447–457
Hassanpour MM, Pyrcz MJ, Deutsch CV (2013) Improved geostatistical models of inclined heterolithic strata for McMurray formation, Alberta, Canada. AAPG Bull 97(7):1209–1224. doi:10.1306/01021312054
Holden L, Hauge R, Skare Ø, Skorstad A (1998) Modeling of fluvial reservoirs with object models. Math Geol 30(5):473–496
Howard A (1996) Modelling channel evolution and floodplain morphology. In: Floodplain processes, pp 15–62
Howard A, Knutson T (1984) Sufficient conditions for river meandering: a simulation approach. Wat Resour Res 20(11):1659–1667
Issautier B, Fillacier S, Gallo YL, Audigane P, Chiaberge C, Viseur S (2013) Modelling of \({\rm CO}_2\) storage capacity and performance. Energy Procedia 37:5181–5190
Jackson M, Muggeridge A (2000) Effect of discontinuous shales on reservoir performance during horizontal waterflooding. SPE J 5(4):446–455
Jackson MD, Hampson GJ, Sech RP (2009) Three-dimensional modeling of a shoreface-shelf parasequence reservoir analog: part 2. Geologic controls on fluid flow and hydrocarbon recovery. AAPG Bull 93(9):1183–1208. doi:10.1306/05110908145
Journel A (1996) Conditional simulation of geologically averaged block permeabilities. J Hydrol 183(1): 23–35
Journel A, Gundeso R, Gringarten E, Yao T (1998) Stochastic modelling of a fluvial reservoir: a comparative review of algorithms. J Pet Sci Eng 21(1):95–121
Knighton D (2014) Fluvial forms and processes: a new perspective, 2nd edn. Routledge, New York
Li H, Caers J (2011) Geological modelling and history matching of multi-scale flow barriers in channelized reservoirs: methodology and application. Pet Geosci 17(1):17–34. doi:10.1144/1354-079309-825
Lopez S (2003) Modélisation de réservoirs chenalisés méandriformes: une approche génétique et stochastique. PhD thesis, Mines Paris Tech
Manchuk JG, Deutsch CV (2012) Implementation aspects of sequential gaussian simulation on irregular points. Comput Geosci 16(3):625–637
Manchuk J, Leuangthong O, Deutsch CV (2005) Direct geostatistical simulation on unstructured grids. In: Geostatistics Banff 2004. Springer, New York, pp 85–94
Mariethoz G, Caers J (2014) Multiple-point geostatistics: stochastic modeling with training images. Wiley-Blackwell, New York
Mariethoz G, Comunian A, Irarrazaval I, Renard P (2014) Analog-based meandering channel simulation. Water Resour Res 50(2):836–854. doi:10.1002/2013WR013730
McKee ED (1957) Flume experiments on the production of stratification and cross-stratification. J Sediment Res 27(2):129–134. doi:10.1306/74D70678-2B21-11D7-8648000102C1865D
Miall A (1985) Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth-Sci Rev 22(4):261–308
Miall A (1996) Geology of fluvial deposits: sedimentary facies. Springer, New York
Miall A (2010) Alluvial deposits. In: James N, Dalrymple R (eds) Facies model 4. St. John’s: Geological Association of Canada, pp 105–138
Mirowski PW, Tetzlaff DM, Davies RC, McCormick DS, Williams N, Signer C (2009) Stationarity scores on training images for multipoint geostatistics. Math Geosci 41(4):447–474
Nordahl K, Ringrose PS, Wen R (2005) Petrophysical characterization of a heterolithic tidal reservoir interval using a process-based modelling tool. Pet Geosci 11(1):17–28
Novakovic D, White C, Corbeanu R, Hammon Iii W, Bhattacharya J, McMechan G (2002) Hydraulic effects of shales in fluvial–deltaic deposits: Ground-penetrating radar, outcrop observations, geostatistics, and three-dimensional flow modeling for the Ferron sandstone, Utah. Math Geol 34(7):857–893
Piegl L, Tiller W (1995) The NURBS book. Springer, London
Pyrcz MJ, Catuneanu O, Deutsch CV (2005) Stochastic surface-based modeling of turbidite lobes. AAPG Bull 89(2):177–191. doi:10.1306/09220403112
Pyrcz M, Boisvert J, Deutsch C (2009) Alluvsim: a program for event-based stochastic modeling of fluvial depositional systems. Comput Geosci 35(8):1671–1685. doi:10.1016/j.cageo.2008.09.012
Reineck HE, Singh IB (1980) Depositional sedimentary environments. Springer, Berlin
Renard P, Mariethoz G (2014) Special issue on 20 years of multiple-point statistics: part 1. Math Geosci 46(2):129–131
Rongier G, Collon P, Renard P, Ruiu J (2015) Channel simulation using L-system, potential fields and NURBS. In: Petroleum geostatistics 2015, EAGE. doi:10.3997/2214-4609.201413604
Ruiu J, Caumon G, Viseur S, Antoine C (2014) Modeling channel forms using a boundary representation based on non-uniform rational b-splines. In: Mathematics of planet earth. Springer, New York, pp 581–584
Ruiu J, Caumon G, Viseur S (2015) Semiautomatic interpretation of 3D sedimentological structures on geologic images: an object-based approach. Interpretation 3(3):SX63–SX74
Sech RP, Jackson MD, Hampson GJ (2009) Three-dimensional modeling of a shoreface-shelf parasequence reservoir analog: part 1. Surface-based modeling to capture high-resolution facies architecture. AAPG Bull 93(9):1155–1181. doi:10.1306/05110908144
Shtuka A, Samson P, Mallet JL (1996) Petrophysical simulation within an object-based reservoir model. In: Proc. European 3D reservoir modelling conference (SPE 35480)
Viseur S (2004) Turbidite reservoir characterization: object-based stochastic simulation meandering channels. Bull Soc Geol Fr 175(1):11–20. doi:10.2113/175.1.11
Wen R, Martinius A, Næss A, Ringrose P (1998) Three-dimensional simulation of small-scale heterogeneity in tidal deposits—a process-based stochastic simulation method. In: Proceedings of the 4th annual conference of the international association of mathematical geology (IAMG). De Frede editore, Ischia, pp 129–134