Nghiên cứu thử nghiệm mô hình về phản ứng của nền cát san hô được gia cường bằng kỹ thuật rung nén

Acta Geotechnica - Tập 18 - Trang 6201-6212 - 2023
Jinqiao Zhao1,2, Qiang Ou1,2, Xuanming Ding1,2, Zhixiong Chen1,2
1College of Civil Engineering, Chongqing University, Chongqing, China
2Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing, China

Tóm tắt

Kỹ thuật rung nén không có lớp lấp lại là một phương pháp xử lý nền móng hiệu quả cho nền cát san hô được khai thác thủy lực. Trong nghiên cứu này, một loạt các thử nghiệm mô hình đã được thực hiện để so sánh bốn biến số trong quá trình rung nén. Các phản ứng động của áp suất lỗ rỗng dư thừa và áp lực đất ngang được ghi lại và phân tích. Kết quả cho thấy lớp nông có khả năng bị lỏng hóa nhiều hơn trong lần thâm nhập đầu tiên khi công nghệ rung nén hai điểm hoạt động, trong khi công nghệ rung nén một điểm tạo ra sự phân bố đồng đều của tỷ lệ áp suất lỗ rỗng dư thừa. Hơn nữa, thời gian rung đầu tiên có ảnh hưởng lớn đến khả năng chống lại lỏng hóa, và quá trình rung nhiều hơn ba lần là thừa cho việc làm đặc. Ngoài ra, hiệu quả gia cường tại lớp nông có thể tốt hơn với tần số rung lớn hơn hợp lý của các thiết bị rung và khoảng cách giữa hai thiết bị rung ít hơn. Về áp lực đất ngang, áp lực đất ngang cực đại xuất hiện ở giữa giai đoạn di chuyển chứ không phải ở cuối. Các giá trị cực đại giảm dần khi khoảng cách từ các thiết bị rung tăng lên trong quá trình thâm nhập. Hơn nữa, áp lực đất ngang do rung nén một điểm gây ra lớn hơn rõ rệt so với các trường hợp khác ở giữa hai thiết bị rung. Tần số rung lớn hơn và khoảng cách rung ít hơn dẫn đến áp lực đất ngang cực đại gần điểm rung thấp đáng kể.

Từ khóa

#vibroflotation #áp suất lỗ rỗng dư thừa #áp lực đất ngang #xử lý nền móng #cát san hô

Tài liệu tham khảo

Anwar MB (2019) Correlation between PMT and SPT results for calcareous soil. HBRC J 14(1):50–55. https://doi.org/10.1016/j.hbrcj.2016.03.001 Arnold M, Herle I (2009) Comparison of vibrocompaction methods by numerical simulations. Int J Numer Anal Meth Geomech 33(16):1823–1838. https://doi.org/10.1002/nag.798 Blázquez R, López-Querol S (2006) Generalized densification law for dry sand subjected to dynamic loading. Soil Dyn Earthq Eng 26(9):888–898. https://doi.org/10.1016/j.soildyn.2005.09.001 Cao G, Chen Z, Wang C, Ding X (2020) Dynamic responses of offshore wind turbine considering soil nonlinearity and wind-wave load combinations. Ocean Engineering. https://doi.org/10.1016/j.oceaneng.2020.108155 Chang-Qi Z, Hai-Yang C, Qing-Shan M, Ren W (2014) Microscopic characterization of intra-pore structures of calcareous sands. Rock Soil Mech 35(7):1831–1836. https://doi.org/10.16285/j.rsm.2014.07.005. (in Chinese) Coop MR (1990) The mechanics of uncemented carbonate sands. Géotechnique 40(4):607–626. https://doi.org/10.1680/geot.1990.40.4.607 Ding X-m, Luo Z-g, Ou Q (2022) Mechanical property and deformation behavior of geogrid reinforced calcareous sand. Geotext Geomembr 50(4):618–631. https://doi.org/10.1016/j.geotexmem.2022.03.002 Ding X, Wu Q, Liu H, Chen Z, Chen Y, Peng Y (2019) Shaking table tests on dynamic response of coral sand foundation under buildings. Chinese J Geotech Eng 41(8):1408–1117. https://doi.org/10.11779/CJGE201908004 Ding X, Zhang Y, Wu Q, Cao G, Chen Z (2021) Effects of groundwater level on the seismic responses of coral sand ground and superstructure by shaking table tests. Acta Geotech 17(7):3047–3066. https://doi.org/10.1007/s11440-021-01404-5 Ding X, Zhang Y, Wu Q, Chen Z, Wang C (2021) Shaking table tests on the seismic responses of underground structures in coral sand. Tunn Undergr Space Technol. https://doi.org/10.1016/j.tust.2020.103775 Duncan JM, Seed RB (1986) Compaction-induced earth pressures under K0-conditions. J Geotech Eng 112(1):1–22. https://doi.org/10.1061/(asce)0733-9410(1986)112:1(1) Ecemis N, Demirci HE, Karaman M (2014) Influence of consolidation properties on the cyclic re-liquefaction potential of sands. Bull Earthq Eng 13(6):1655–1673. https://doi.org/10.1007/s10518-014-9677-y Feng S-J, Tan K, Shui W-H, Zhang Y (2013) Densification of desert sands by high energy dynamic compaction. Eng Geol 157:48–54. https://doi.org/10.1016/j.enggeo.2013.01.017 Jafarian Y, Javdanian H, Haddad A (2018) Strain-dependent dynamic properties of Bushehr siliceous-carbonate sand: experimental and comparative study. Soil Dyn Earthq Eng 107:339–349. https://doi.org/10.1016/j.soildyn.2018.01.033 Jiang C-y, Ding X-m, Chen X-s, Fang H-q, Zhang Y (2022) Laboratory study on geotechnical characteristics of marine coral clay. J Central South Univ 29(2):572–581. https://doi.org/10.1007/s11771-022-4900-5 Jiang M, Jiang H, Xi B (2018) Analysis of the effect of grain size distribution on vibroflotation without backfill. In: GeoShanghai International Conference, pp 41–47. doi:https://doi.org/10.1007/978-981-13-0122-3_5 Jiang MJ, Liu WW, He J, Sun YA (2015) simplified DEM numerical simulation of vibroflotation without backfill. In: IOP Conference series: earth and environmental science, vol 1. IOP Publishing, p 012044. doi:https://doi.org/10.1088/1755-1315/26/1/012044 Kirsch K (2010) Ground improvement by deep vibratory methods. Noise Control Eng J 58(6):672. https://doi.org/10.3397/1.3511778 Krim A, Arab A, Bouferra R, Sadek M, Shahrour I (2016) Characteristics of cyclic shear behavior of sandy soils: a laboratory study. Arab J Sci Eng 41(10):3995–4005. https://doi.org/10.1007/s13369-016-2064-z López-Querol S, Peco J, Arias-Trujillo J (2014) Numerical modeling on vibroflotation soil improvement techniques using a densification constitutive law. Soil Dyn Earthq Eng 65:1–10. https://doi.org/10.1016/j.soildyn.2014.05.010 Martin GR, Seed HB, Finn WDL (1975) Fundamentals of liquefaction under cyclic loading. J Geotech Eng Div 101(5):423–438. https://doi.org/10.1061/ajgeb6.0000164 Massarsch KR, Fellenius BH (2002) Vibratory compaction of coarse-grained soils. Can Geotech J 39(3):695–709. https://doi.org/10.1139/t02-006 Massarsch KR, Fellenius BH (2019) Evaluation of vibratory compaction by in situ tests. J Geotech Geoenviron Eng 145(12):05019012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002166 Massarsch KR, Wersäll C, Fellenius BH (2020) Horizontal stress increase induced by deep vibratory compaction. Proc Instit Civil Eng-Geotech Eng 173(3):228–253. https://doi.org/10.1680/jgeen.19.00040 Mitchell JK (1970) In-place treatment of foundation soils. J Soil Mech 96(1):73–110 Mitchell JK (1970) In-place treatment of foundation soils. J Soil Mech Found Division 96(1):73–110. https://doi.org/10.1061/jsfeaq.0001391 Nagula SS, Grabe J (2020) Coupled Eulerian Lagrangian based numerical modelling of vibro-compaction with model vibrator. Comput Geotech. https://doi.org/10.1016/j.compgeo.2020.103545 Nagy P, Adam D, Kopf F, Freitag P (2018) Experimental and theoretical investigation of deep vibro compaction. Ce/papers 2(2–3):725–730. https://doi.org/10.1002/cepa.756 Ou Q, Li Y, Yang Y, Luo Z, Han S, Zou T, Feng D (2022) Mechanical property of biomodified geogrid and reinforced calcareous sand. Geofluids 2022:1–12. https://doi.org/10.1155/2022/3768967 Peng Y, Ding X, Yin Z-Y, Wang P (2022) Micromechanical analysis of the particle corner breakage effect on pile penetration resistance and formation of breakage zones in coral sand. Ocean Eng. https://doi.org/10.1016/j.oceaneng.2022.111859 Peng Y, Liu H, Li C, Ding X, Deng X, Wang C (2021) The detailed particle breakage around the pile in coral sand. Acta Geotech 16(6):1971–1981. https://doi.org/10.1007/s11440-020-01089-2 Saito A (1977) Characteristics of penetration resistance of a reclaimed sandy deposit and their change through vibratory compaction. Soils Found 17(4):31–43. https://doi.org/10.3208/sandf1972.17.4_31 Schmertmann JH (2005) Stress diffusion experiment in sand. J Geotech Geoenviron Eng 131(1):1–10. https://doi.org/10.1061/(asce)1090-0241(2005)131:1(1) Seed HB, Idriss IM (1971) Simplified procedure for evaluating soil liquefaction potential. J Soil Mech Found Division 97(9):1249–1273. https://doi.org/10.1061/jsfeaq.0001662 Singh SC, Carton H, Tapponnier P, Hananto ND, Chauhan APS, Hartoyo D, Bayly M, Moeljopranoto S, Bunting T, Christie P, Lubis H, Martin J (2008) Seismic evidence for broken oceanic crust in the 2004 Sumatra earthquake epicentral region. Nat Geosci 1(11):777–781. https://doi.org/10.1038/ngeo336 Slocombe BC, Bell AL, Baez JI (2000) The densification of granular soils using vibro methods. Ge’otechnique 50(6):715–725. https://doi.org/10.1680/geot.2000.50.6.715 Su D, Ming HY, Li XS (2013) Effect of shaking strength on the seismic response of liquefiable level ground. Eng Geol 166:262–271. https://doi.org/10.1016/j.enggeo.2013.09.013 Teparaksa J, Koseki J (2018) Effect of past history on liquefaction resistance of level ground in shaking table test. Géotechnique Lett 8(4):256–261. https://doi.org/10.1680/jgele.18.00085 Thorburn S (1975) Building structures supported by stabilized ground. Géotechnique 25(1):83–94 Triantafyllidis T, Kimmig I (2019) A simplified model for vibro compaction of granular soils. Soil Dyn Earthq Eng 122:261–273. https://doi.org/10.1016/j.soildyn.2018.12.008 Wang C, Ding X, Yin Z-Y, Peng Y, Chen Z (2021) Mechanical characteristics and particle breakage of coral sand under one-dimensional repeated loading. Acta Geotech 17(7):3117–3130. https://doi.org/10.1007/s11440-021-01381-9 Wang X-Z, Jiao Y-Y, Wang R, Hu M-J, Meng Q-S, Tan F-Y (2011) Engineering characteristics of the calcareous sand in Nansha Islands. South China Sea Eng Geol 120(1–4):40–47. https://doi.org/10.1016/j.enggeo.2011.03.011 Wang XZ, Ding HZ, Meng QS, Wei HZ, Wu Y, Zhang Y (2021) Engineering characteristics of coral reef and site assessment of hydraulic reclamation in the South China Sea. Const Build Mater. https://doi.org/10.1016/j.conbuildmat.2021.124263 Wu Q, Ding X, Chen Z, Zhang Y (2020) Shaking table tests on seismic responses of pile-soil-superstructure in coral sand. J Earthquake Eng 26(7):3461–3487. https://doi.org/10.1080/13632469.2020.1803160 Wu Q, Ding X, Zhang Y, Chen Z (2020) Comparative study on seismic response of pile group foundation in coral sand and Fujian sand. J Marine Sci Eng. https://doi.org/10.3390/jmse8030189 Xiao P, Liu H, Xiao Y, Stuedlein AW, Evans TM (2018) Liquefaction resistance of bio-cemented calcareous sand. Soil Dyn Earthq Eng 107:9–19. https://doi.org/10.1016/j.soildyn.2018.01.008 Xiao Y, Liu H, Chen Q, Ma Q, Xiang Y, Zheng Y (2017) Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process. Acta Geotech 12(5):1177–1184. https://doi.org/10.1007/s11440-017-0580-y Xiao Y, Liu H, Xiao P, Xiang J (2016) Fractal crushing of carbonate sands under impact loading. Géotechnique Lett 6(3):1–6. https://doi.org/10.1680/jgele.16.00056 Zhang L, Ou Q, Zhao M (2018) Double-beam model to analyze the performance of a pavement structure on geocell-reinforced embankment. J Eng Mech. https://doi.org/10.1061/(asce)em.1943-7889.0001453 Zhu C-Q, Zhou B, Liu H-F (2014) Investigation on strength and microstracture of naturally cemented calcareous soil. Rock Soil Mech 35(6):1655–1663. https://doi.org/10.16285/j.rsm.2014.06.011. (in Chinese)