Model predictive control: Recent developments and future promise

Automatica - Tập 50 Số 12 - Trang 2967-2986 - 2014
D.Q. Mayne1
1Department of Electrical and Electronic Engineering, Imperial College, United Kingdom

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adetola, 2009, Adaptive model predictive control for constrained nonlinear systems, Systems & Control Letters, 58, 320, 10.1016/j.sysconle.2008.12.002

Aguilera, 2013, Stability analysis of quadratic MPC with a discrete input alphabet, IEEE Transactions on Automatic Control, 58, 3190, 10.1109/TAC.2013.2264551

Alessio, Alessandro, & Bemporad, Alberto (2008). A survey on explicit model predictive control. In Lalo Magni (Ed.), Proceedings of international workshop on assessment and future directions of model predictive control.

Amrit, 2011, Economic optimization using model predictive control with a terminal cost, Annual Reviews in Control, 35, 178, 10.1016/j.arcontrol.2011.10.011

Angeli, 2012, On average performance and stability of economic model predictive control, IEEE Transactions on Automatic Control, 57, 1615, 10.1109/TAC.2011.2179349

Bayer, Florian, Bürger, Mathias, & Allgöwer, Frank (2013). Discrete-time incremental ISS: a framework for robust NMPC. In Proceedings of European control conference, Zurich, Switzerland, July (pp. 2068–2073).

Bemporad, A. (2004). Hybrid toolbox–user’s guide.http://csa.lab.imtlucca.it/~bemporad/hybrid/toolbox.

Bemporad, 2012, Dynamic option hedging via stochastic model predictive control based on scenario simulation, Quantitative Finance, 1

Bemporad, 1999, Control of systems integrating logic, dynamics, and constraints, Automatica, 35, 407, 10.1016/S0005-1098(98)00178-2

Bemporad, 2002, The explicit linear quadratic regulator for constrained systems, Automatica, 38, 3, 10.1016/S0005-1098(01)00174-1

Bemporad, 2011, Ultra-fast stabilizing model predictive control via canonical piecewise affine approximations, IEEE Transactions on Automatic Control, 53, 2209

Bemporad, 2004, Anti wind-up synthesis via sampled-data piecewise affine optimal control, Automatica, 40, 549, 10.1016/j.automatica.2003.11.004

Bernardini, 2009, Scenario-based model predictive control of stochastic constrained linear systems, 6333

Bertsekas, 1971, On the minimax reachability of target sets and target tubes, Automatica, 7, 233, 10.1016/0005-1098(71)90066-5

Bertsekas, 1971, Recursive state estimation for a set-membership description of uncertainty, IEEE Transactions on Automatic Control, 16, 117, 10.1109/TAC.1971.1099674

Biegler, 2013, A survey on sensitivity-based nonlinear model predictive control, 499

Binder, 2001, Introduction to model based optimization of chemical processes on moving horizons, 295

Bryson, 1969

Calafiore, 2006, The scenario approach to robust control design, IEEE Transactions on Automatic Control, 51, 742, 10.1109/TAC.2006.875041

Calafiore, 2013, Robust model predictive control via scenario optimization, IEEE Transactions on Automatic Control, 56, 219, 10.1109/TAC.2012.2203054

Camacho, 2013

Camacho, 2010, Model predictive control techniques for hybrid systems, Annual Reviews in Control, 34, 21, 10.1016/j.arcontrol.2010.02.002

Cannon, 2009, Probabilistic tubes in linear stochastic model predictive control, Systems & Control Letters, 58, 747, 10.1016/j.sysconle.2009.08.004

Cannon, 2009, Probabilistic constrained MPC for multiplicative and additive stochastic uncertainty, IEEE Transactions on Automatic Control, 54, 1626, 10.1109/TAC.2009.2017970

Carrasco, 2011, Feedforward model predictive control, Annual Reviews in Control, 35, 199, 10.1016/j.arcontrol.2011.10.007

Chatterjee, 2011, Stochastic receding horizon control with bounded control inputs: a vector space approach, IEEE Transactions on Automatic Control, 56, 2704, 10.1109/TAC.2011.2159422

Chen, 2012, Distributed economic MPC: application to a nonlinear chemical process network, Journal of Process Control, 22, 689, 10.1016/j.jprocont.2012.01.016

Chisci, 2001, Systems with persistent disturbances: predictive control with restricted constraints, Automatica, 37, 1019, 10.1016/S0005-1098(01)00051-6

Chisci, 2003, Dual mode predictive tracking of piecewise constant references for constrained linear systems, International Journal of Control, 76, 61, 10.1080/0020717021000049160

Christofides, 2013, Distributed model predictive control: a tutorial review and future research directions, Computers & Chemical Engineering, 51, 21, 10.1016/j.compchemeng.2012.05.011

Copp, David, & Hespanha, João Pedro (2014a). Nonlinear output-feedback model predictive control with moving horizon estimation. In Proceedings of the 53rd IEEE conference on decision and control, December.

Copp, 2014

Di Cairano, 2010, Model predictive control tuning by controller matching, IEEE Transactions on Automatic Control, 55, 185, 10.1109/TAC.2009.2033838

Diehl, 2011, A Lyapunov function for economic optimizing model predictive control, IEEE Transactions on Automatic Control, 56, 703, 10.1109/TAC.2010.2101291

Diehl, 2009, Efficient numerical methods for nonlinear MPC and moving horizon estimation, Vol. 384, 391

Domahidi, A., Chu, E., & Boyd, S. (2013). ECOS: an SOCP solver for embedded systems. In Proceedings of the European control conference, Zurich, Switzerland.

Dunbar, 2006, Distributed receding horizon contol for multi-vehicle formation stabilization, Automatica, 42, 549, 10.1016/j.automatica.2005.12.008

Fagiano, Lorenzo, & Teel, Andrew R. (2012). On generalised terminal state constraints for model predictive control. In Proceedings of 4th IFAC nonlinear model predictive control conference (pp. 299–304).

Fagiano, 2013, Generalized terminal state constraint for model predictive control, Automatica, 49, 2622, 10.1016/j.automatica.2013.05.019

Falugi, 2013, Model predictive control for tracking random references, 518

Falugi, 2013, Model predictive control for tracking random references, 518

Falugi, 2014, Getting robustness against unstructured uncertainty: a tube-based MPC approach, IEEE Transactions on Automatic Control, 10.1109/TAC.2013.2287727

Farina, Marcello, & Scattolini, Riccardo (2011). Distributed non-cooperative MPC with neighbour-to-neighbour communication. In Proceedings of the 18th IFAC world congress, Milan, Italy.

Findeisen, 2003, State and output feedback nonlinear model predictive control: an overview, European Journal of Control, 9, 190, 10.3166/ejc.9.190-206

Franco, 2008, Cooperative constrained control of distributed agents with nonlinear dynamics and delayed information exchange: a stabilizing receding-horizon approach, IEEE Transactions on Automatic Control, 53, 324, 10.1109/TAC.2007.914956

Gilbert, 1999, Fast reference governors for systems with state and control constraints and disturbance inputs, International Journal of Robust and Nonlinear Control, 9, 1117, 10.1002/(SICI)1099-1239(19991230)9:15<1117::AID-RNC447>3.0.CO;2-I

Goebel, 2009, Hybrid dynamical systems, IEEE Control Systems Magazine, 29, 28, 10.1109/MCS.2008.931718

Goodwin, 2013, Scenario based closed loop model predictive control with applications to emergency vehicle scheduling, International Journal of Control, 86, 1338, 10.1080/00207179.2013.788215

Goulart, 2006, Optimization over state feedback policies for robust control with constraints, Automatica, 42, 523, 10.1016/j.automatica.2005.08.023

Grimm, 2004, Examples when nonlinear model predictive control is nonrobust, Automatica, 40, 1729, 10.1016/j.automatica.2004.04.014

Grimm, 2007, Nominally robust model predictive control with state constraints, IEEE Transactions on Automatic Control, 52, 1856, 10.1109/TAC.2007.906187

Grüne, Lars (2012). NMPC without terminal constraints. In Proceedings of IFAC conference on nonlinear model predictive control 2012, August.

Grüne, 2013, Economic receding horizon control without terminal constraints, Automatica, 49, 725, 10.1016/j.automatica.2012.12.003

Grüne, 2011

Hartley, E. N., & Maciejowski, J. M. (2009). Initial tuning of predictive controllers by reverse engineering. In Proceedings of European control conference, Budapest, Hungary (pp. 725–730).

Haseltine, 2005, Critical evaluation of extended Kalman filtering and moving-horizon estimation, Industrial & Engineering Chemistry Research, 44, 2451, 10.1021/ie034308l

Hespanha, 2002, Switching between stabilizing controllers, Automatica, 38, 1905, 10.1016/S0005-1098(02)00139-5

Hokayem, 2009, On stochastic receding horizon control with bounded control inputs, 6359

Hokayem, Peter, Chatterjee, Debasish, Ramponi, Federico, Chaloulos, Georgios, & Lygeros, John (2010). Stable stochastic receding horizon control of linear systems with bounded control inputs. In Int. symposium on mathematical theory of networks and systems, MTNS (pp. 31–36).

Houska, 2011, ACOD toolkit—an open-source framework for automatic control and dynamic optimization, Optimal Control Applications and Methods, 10.1002/oca.939

Imsland, 2003, A note on stability, robustness and performance of output feedback nonlinear model predictive control, Journal of Process Control, 13, 633, 10.1016/S0959-1524(03)00006-4

Ji, 2013

Jiang, 2001, Input-to-state stability for discrete-time nonlinear systems, Automatica, 37, 857, 10.1016/S0005-1098(01)00028-0

Jones, 2014, Approximate receding horizon control

Jones, 2007, Multiparametric linear programming with applications in control, European Journal of Control, 13, 152, 10.3166/ejc.13.152-170

Jones, C., & Morari, M. (2006). Multiparametric linear complementarity problems. In Proceedings 45th IEEE conference on decision and control, San Diego, California, USA (pp. 5687–5692).

Kantas, 2009, Sequential Monte Carlo for model predictive control, 263

Kellet, 2004, Smooth Lyapunov functions and robustness of stability for difference inclusions, Systems & Control Letters, 52, 395, 10.1016/j.sysconle.2004.02.015

Kerrigan, Eric C., Jerez, Juan L., Longo, Stephano, & Constantinides, George A. (2013). Number representation in predictive control. In Proceedings of European control conference, Zurich, Switzerland (pp. 60–67).

Kerrigan, 2004, Feedback min–max model predictive control using a single linear program: robust stability and the explicit solution, International Journal of Robust and Nonlinear Control, 14, 395, 10.1002/rnc.889

Keviczky, 2004, A study on decentralized receding horizon control for decoupled systems, 4921

Khalil, 2002

Kirches, 2010, Block structured quadratic programming for the direct multiple shooting method for optimal control, Optimization Methods & Software, 26, 239, 10.1080/10556781003623891

Kolmanovsky, 1998, Theory and computation of disturbance invariant sets for discrete-time linear systems, Mathematical Problems in Engineering, 4, 317, 10.1155/S1024123X98000866

Kong, 2013, Predictive metamorphic control, Automatica, 49, 3670, 10.1016/j.automatica.2013.09.029

Korda, Milan, & Jones, Colin (2014). Certification of fixed computation time first-order optimization-based controllers for a class on nonlinear dynamics. In Proceedings of the 2014 American control conference.

Kouvaritakis, 2010, Explicit use of probabilistic distributions in linear predictive control, Automatica, 46, 1719, 10.1016/j.automatica.2010.06.034

Kurzhanski, 1993, On the theory of trajectory tubes: a mathematical formalism for uncertain dynamics, viability and control, Vol. 17, 122

Kvasnica, M., Grieder, P., & Baotić, M. (2006). Multi Parametric Toolbox (MPT), http://control.ee.ethz.ch/~mpt/.

Kwon, 2005

Lazar, 2006

Lazar, 2009, Lyapunov functions, stability and input-to-state stability subtleties for discrete-time discontinuous systems, IEEE Transactions on Automatic Control, 51, 2421, 10.1109/TAC.2009.2029297

Lazar, 2013, Further input-to-state stability subleties for discrete-time systems, IEEE Transactions on Automatic Control, 58, 1609, 10.1109/TAC.2012.2231611

Lazar, 2006, Stabilizing model predictive control of hybrid systems, IEEE Transactions on Automatic Control, 51, 1813, 10.1109/TAC.2006.883059

Lazar, 2008, On input-to-state stability of min–max nonlinear model predictive control, Systems & Control Letters, 57, 39, 10.1016/j.sysconle.2007.06.013

Lee, S., Polak, E., & Walrand, J. (2013). A receding horizon control law for harbor defense. In Proceedings of 51st annual Allerton conference on appled optimization theory, Monticello, Illinois, October (pp. 70–77).

Limon, 2009, Input-to-state stability: an unifying framework for robust model predictive control, Vol. 384, 1

Limon, 2006, Input to state stability of min–max MPC controllers for nonlinear systems with bounded uncertainties, Automatica, 42, 797, 10.1016/j.automatica.2006.01.001

Limon, 2006, On the stability of constrained MPC without terminal constraint, IEEE Transactions on Automatic Control, 51, 832, 10.1109/TAC.2006.875014

Limon, 2008, MPC for tracking piecewise constant references for constrained linear systems, Automatica, 2382, 10.1016/j.automatica.2008.01.023

Limon, 2010, Robust tube-based MPC for tracking of constrained linear systems with additive disturbances, Journal of Process Control, 20, 248, 10.1016/j.jprocont.2009.11.007

Lincoln, 2006, Relaxing dynamic programming, Automatica, 51, 1249, 10.1109/TAC.2006.878720

Liu, 2010, Sequential and iterative architectures for distributed model predictive control of nonlinear process systems, AIChE Journal, 56, 2137, 10.1002/aic.12155

Liu, 2009, Distributed model predictive control of nonlinear process systems, AIChE Journal, 55, 1171, 10.1002/aic.11801

Lofberg, 2003, Approximations of closed-loop minimax MPC, 1438

Løvaas, 2008, Robust output feedback model predictive control for systems with unstructured uncertainty, Automatica, 44, 1933, 10.1016/j.automatica.2007.10.003

Maciejowski, 2002

Maeder, 2009, Linear offset-free model predictive control, Automatica, 45, 2214, 10.1016/j.automatica.2009.06.005

Maeder, 2010, Offset-free reference tracking with model predictive control, Automatica, 46, 1469, 10.1016/j.automatica.2010.05.023

Maestre, 2011, Distributed model predictive control based on a cooperative game, Optimal Control Applications and Methods, 32, 153, 10.1002/oca.940

Maestre, 2014, Vol. 69

Magni, 2001, Output feedback and tracking of nonlinear systems with model predictive control, Automatica, 37

Magni, 2008, Switched model predictive control for performance enhancement, International Journal of Control, 81, 1859, 10.1080/00207170801910417

Marafiore, 2013, Persistently exciting model predictive control, International Journal of Adaptive Control and Signal Processing

Marruedo, D. Limon, Alamo, T., & Camacho, E. F. (2002). Input-to-state stable MPC for constrained discrete-time nonlinear systems with bounded additive uncertainties. In Proceedings of 41st IEEE conference on decision and control, Los Vegas, December (pp. 4619–4624).

Mayne, 2013, An apologia for stabilising conditions in model predictive control, International Journal of Control, 86, 2090, 10.1080/00207179.2013.813647

Mayne, 2011, Tube based robust nonlinear model predictive control, International Journal of Robust and Nonlinear Control, 21, 1341, 10.1002/rnc.1758

Mayne, 2001, Robustifying model predictive control of constrained linear systems, Electronics Letters, 37, 1422, 10.1049/el:20010951

Mayne, 2003, Model predictive control of constrained piecewise affine discrete-time systems, International Journal of Robust and Nonlinear Control, 13, 261, 10.1002/rnc.817

Mayne, 2006, Robust output feedback model predictive control of constrained linear systems, Automatica, 42, 1217, 10.1016/j.automatica.2006.03.005

Mayne, D. Q., Rakovíc, S. V., & Kerrigan, E. C. (2007). Optimal control and piecewise parametric programming. In Proceedings of the European control conference 2007, Kos, Greece, July 2–5 (pp. 2762–2767).

Mayne, 2000, Constrained model predictive control: stability and optimality, Automatica, 36, 789, 10.1016/S0005-1098(99)00214-9

Mayne, 2005, Robust model predictive control of constrained linear systems with bounded disturbances, Automatica, 41, 219, 10.1016/j.automatica.2004.08.019

Müller, 2013, Economic model predictive control with self-tuning terminal cost, European Journal of Control, 19, 408, 10.1016/j.ejcon.2013.05.019

Müller, M. A., Angeli, D., & Allgower, F. (2013b). On convergence of averagely constained economic MPC and necessity of disspativity for optimal steady-state operation. In Proceedings of 2013 American control conference (pp. 3141–3146).

Müller, 2012, Improving performance in model predictive control: switching cost functionals under average dwell-time, Automatica, 48, 402, 10.1016/j.automatica.2011.11.005

Müller, 2012, Model predictive control of switched nonlinear systems under average dwell-time, Journal of Process Control, 22, 1702, 10.1016/j.jprocont.2012.07.004

Muller, 2011, How good is quantized model predictive control with horizon one?, IEEE Transactions on Automatic Control, 56, 2623, 10.1109/TAC.2011.2122610

Müller, 2012, Cooperative control of dynamically decoupled systems via distributed model predictive control, International Journal of Robust and Nonlinear Control, 22, 1376, 10.1002/rnc.2826

Müller, 2012, Robust cooperative control of dynamically decoupled systems via distributed MPC, 412

Muske, 2002, Disturbance modeling for offset-free linear model predictive control, Journal of Process Control, 12, 617, 10.1016/S0959-1524(01)00051-8

Nesterov, 2004, Vol. 87

Pannocchia, 2005, Offset-free receding horizon control of constrained linear systems, AIChE Journal, 51, 3134, 10.1002/aic.10626

Pannocchia, 2003, Disturbance models for offset-free model predictive control, AIChE Journal, 49, 426, 10.1002/aic.690490213

Pannocchia, 2011, Conditions under which suboptimal nonlinear MPC is inherently robust, Systems & Control Letters, 60, 747, 10.1016/j.sysconle.2011.05.013

Patrinos, 2010, A new algorithm for solving convex parametric quadratic programs based on graphical derivatives of solution mappings, Automatica, 46, 1405, 10.1016/j.automatica.2010.06.008

Pin, 2011, Networked predictive control of uncertain constrained nonlinear systems: recursive feasibility and input-to-state stability analysis, IEEE Transactions on Automatic Control, 56, 72, 10.1109/TAC.2010.2051091

Pin, 2009, Robust model predictive control of nonlinear systems with bounded and state-dependent uncertainties, IEEE Transactions on Automatic Control, 64, 1681, 10.1109/TAC.2009.2020641

Polak, 1971

Polak, 2005, On the use of augmented Lagrangians in the solution of generalized semi-infinite min–max problems, Computational Optimization and Applications, 31, 173, 10.1007/s10589-005-2179-8

Primbs, 2007, Portfolio optimization applications of stochastic receding horizon control, 1811

Primbs, 2009, Dynamic hedging of basket options under proportional transaction costs using receding horizon control, International Journal of Control, 82, 1841, 10.1080/00207170902783341

Primbs, 2000, Feasibility and stability of constrained finite receding horizon control, Automatica, 36, 965, 10.1016/S0005-1098(00)00004-2

Primbs, 2008, A stochastic receding horizon control approach to constrained index tracking, Asia-Pacific Financial Markets, 15, 3, 10.1007/s10690-008-9073-1

Primbs, 2009, Stochastic receding horizon control of constrained linear systems with state and control multiplicative noise, IEEE Transactions on Automatic Control, 54, 221, 10.1109/TAC.2008.2010886

Qin, 2003, A survey of industrial model predictive control technology, Control Engineering Practice, 11, 733, 10.1016/S0967-0661(02)00186-7

Quevedo, 2004, Finite constraint set receding horizon quadratic control, International Journal of Robust and Nonlinear Control, 14, 355, 10.1002/rnc.887

Raff, 2007, Nonlinear model predictive control: a passivity-based approach, Vol. 358, 151

Raković, 2012, Invention of prediction structures and categorization of robust MPC syntheses, 245

Raković, 2005, Invariant approximations of the minimal robustly positively invariant sets, IEEE Transactions on Automatic Control, 50, 406, 10.1109/TAC.2005.843854

Rakovic̀, 2012, Parameterized tube model predictive control, IEEE Transactions on Automatic Control, 57, 2746, 10.1109/TAC.2012.2191174

Rao, 2003, Constrained state estimation for nonlinear constrained discrete-time systems: stability and moving horizon approximations, IEEE Transactions on Automatic Control, 48, 246, 10.1109/TAC.2002.808470

Rao, 1998, Application of interior-point methods to model predictive control, Journal of Optimization Theory and Applications, 99, 723, 10.1023/A:1021711402723

Rawlings, 2009, Optimizing process economic performance using model predictive control, Vol. 384, 119

Rawlings, J. B., Angeli, D., & Bates, C. N. (2012). Fundamentals of economic model predictive control. In Proceedings of 51st IEEE conference on decision and control, Maui, Hawaii, December (pp. 3851–3861).

Rawlings, 2008, Unreachable setpoints in model predictive control, IEEE Transactions on Automatic Control, 53, 2209, 10.1109/TAC.2008.928125

Rawlings, 2012, Optimization-based state estimation: current status and some new results, Journal of Process Control, 22, 1439, 10.1016/j.jprocont.2012.03.001

Rawlings, James B., & Mayne, David Q. (2009). Model predictive control: theory and design. Nob Hill, Madison, Wisconsin, August.

Richards, 2007, Robust distributed model predictive control, International Journal of Control, 80, 1517, 10.1080/00207170701491070

Richter, S., Morari, M., & Jones, C. N. (2011). Towards computational complexity certication for constrained MPC based on Lagrange relaxation and the fast gradient method. In Proceedings of the 50th IEEE conference on decision and control and the European control conference, December.

Riggs, Daniel J., & Bitmead, Robert R. (2012). MPC under the hood/sous le capot/unter der Haube. In Proceedings of the 4th IFAC nonlinear model predictive control conference, Noordwijkerhout, Nederland, August.

Rossiter, 1998, A numerically robust state-space approach to stable-predictive control strategies, Automatica, 34, 65, 10.1016/S0005-1098(97)00171-4

Scattolini, 2009, Architectures for distributed and hierarchical model predictive control—a review, Journal of Process Control, 19, 10.1016/j.jprocont.2009.02.003

Scokaert, 1998, Min–max feedback model predictive control for constrained linear systems, IEEE Transactions on Automatic Control, 43, 1136, 10.1109/9.704989

Scokaert, 1999, Suboptimal model predictive control (feasibility implies stability), IEEE Transactions on Automatic Control, 44, 648, 10.1109/9.751369

Seron, Marià M., De Doná, José A., & Goodwin, Graham C. (2000). Global analytical model predictive control with input constraints. In Proceedings of the 39th IEEE conference on decision and control, Sydney, Australia, December (pp. 154–159).

Sha, 2008, A new neural networks based adaptive model predictive control for unknown multiple variable non-linear systems, International Journal of Advanced Mechatronic Systems, 1, 146, 10.1504/IJAMECHS.2008.022013

Sontag, 1995, On the characterization of the input to state stability property, Systems & Control Letters, 24, 351, 10.1016/0167-6911(94)00050-6

Spjøtvold, 2006, On the facet-to-facet property of solutions to convex parametric quadratic programs, Automatica, 42, 2209, 10.1016/j.automatica.2006.06.026

Stewart, 2011, Cooperative distributed model predictive control for nonlinear systems, Journal of Process Control, 21, 698, 10.1016/j.jprocont.2010.11.004

Teel, 2004, Discrete time receding horizon control: is the stability robust?, Vol. 301, 3

Tøndel, 2003, An algorithm for multi-parametric quadratic programming and explicit MPC solutions, Automatica, 39, 489, 10.1016/S0005-1098(02)00250-9

Trodden, P. A., & Richards, A. G. (2007). Robust distributed model predictive control with cooperation. In Proceedings of the European control conference(pp. 2172–2178).

Venkat, A. N., Rawlings, J. B., & Wright, S. J. (2005). Stability and optimality of distributed model predictive control. In Proceedings of 44th IEEE conference on decision and control and the European control conference, Seville, Spain(pp. 6680–6685).

Wächter, 2006, On the implementation of a primal–dual interior point filter line search algorithm for large-scale nonlinear programming, Mathematical Programming, 106, 25, 10.1007/s10107-004-0559-y

Walrand, Jean, Polak, Elijah, & Chung, Hoam (2011). Harbor attack: a pursuit–evasion game. In Proceedings of 49th annual Allerton conference on communication, control and computing, September (pp. 1584–1591).

Wongpiromsarn, 2012, Receding horizon temporal logic planning, IEEE Transactions on Automatic Control, 57, 2817, 10.1109/TAC.2012.2195811

Wright, 1993, Interior point methods for optimal control of discrete-time systems, Journal of Optimization Theory and Applications, 77, 161, 10.1007/BF00940784

Yan, 2005, Incorporating state estimation into model predictive control and its application to network traffic control, Automatica, 41, 595, 10.1016/j.automatica.2004.11.022

Yu, Shuyou, Reble, Marcus, Chen, Hong, & Allgöwer, Frank (2011). Inherent robustness properties of quasi-infinite horizon MPC. In Proceedings of the 18th IFAC world congress, Milano, Italy, August, September.