Model of electrical activity in a neuron under magnetic flow effect
Tóm tắt
Từ khóa
Tài liệu tham khảo
Buschman, T.L., Denovellis, E.L., Diogo, C., et al.: Synchronous oscillatory neural ensembles for rules in the prefrontal cortex. Neuron 76, 838–846 (2012)
Wig, G.S., Schlaggar, B.L., Petersen, S.E.: Concepts and principles in the analysis of brain networks. Ann. N.Y. Acad. Sci. 1224, 126–146 (2011)
Seely, J., Crotty, P.: Optimization of the leak conductance in the squid giant axon. Phys. Rev. E 82, 021906 (2010)
Postnov, D.E., Koreshkov, R.N., Brazhe, N.A., et al.: Dynamical patterns of calcium signaling in a functional model of neuron–astrocyte networks. J. Biol. Phys. 35, 425–445 (2009)
Volman, V., Bazhenov, M., Sejnowski, T.J.: Computational models of neuron–astrocyte interaction in epilepsy. Front. Comput. Neurosci. 6, 58 (2012)
Volman, V., Perc, M., Bazhenov, M.: Gap junctions and epileptic seizures-two sides of the same coin? PLoS One 6, e20572 (2011)
Ozer, M., Ekmekci, N.H.: Effect of channel noise on the time-course of recovery from inactivation of sodium channels. Phys. Lett. A 338, 150–154 (2005)
Herz, A.V.M., Gollisch, T., Machens, C.K., et al.: Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science 314, 80–85 (2006)
Gerstner, W., Kistler, W.M.: Spiking Neuron Models Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)
Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)
Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981)
Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15, 1063–1070 (2004)
Ibarz, B., Casado, J.M., Sanjuán, M.A.F.: Map-based models in neuronal dynamics. Phys. Rep. 501, 1–74 (2011)
Perc, M., Marhl, M.: Amplification of information transfer in excitable systems that reside in a steady state near a bifurcation point to complex oscillatory behavior. Phys. Rev. E 71, 026229 (2005)
Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two first-order differential equations. Nature (London) 296, 162–164 (1982)
Gu, H.G., Pan, B.B., Chen, G.R.: Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models. Nonlinear Dyn. 78, 391–407 (2014)
Storace, M., Linaro, D., de Lange, E.: The Hindmarsh–Rose neuron model: bifurcation analysis and piecewiselinear approximations. Chaos 18, 033128 (2008)
Pinto, R.D., Varona, P., Volkovskii, A., et al.: Synchronous behavior of two coupled electronic neurons. Phys. Rev. E 62, 2644 (2000)
Moujahid, A., d’Anjou, A., Torrealdea, F.J., et al.: Efficient synchronization of structurally adaptive coupled Hindmarsh–Rose neurons. Chaos Solitons Fractals 44, 929–933 (2011)
Selverston, A., Rabinovich, M., Abarbanel, H.D., et al.: Reliable circuits for irregular neurons: a dynamical approach to understanding central pattern generators. J. Physiol. 94, 357 (2000)
Gu, H.G., Pan, B.B.: A four-dimensional neuronal model to describe the complex nonlinear dynamics observed in the firing patterns of a sciatic nerve chronic constriction injury model. Nonlinear Dyn. 81, 2107–2126 (2015)
Uzun, R., Ozer, M., Perc, M.: Can scale-freeness offset delayed signal detection in neuronal networks? EPL 105, 60002 (2014)
Ozer, M., Uzuntarla, M., Perc, M., et al.: Spike latency and jitter of neuronal membrane patches with stochastic Hodgkin–Huxley channels. J. Theor. Biol. 261, 83–92 (2009)
Aggarwal, A., Kumar, M., Rawat, T.K., et al.: Optimal design of 2-D FIR filters with quadrantally symmetric properties using fractional derivative constraints. Circ. Syst. Signal Process. (2016). doi: 10.1007/s00034-016-0283-x
Kumar, M., Rawat, T.K.: Fractional order digital differentiator design based on power function and least-squares. Int. J. Electron. (2016). doi: 10.1080/00207217.2016.1138520
Wang, S.T., Wang, W., Liu, F.: Propagation of firing rate in a feed-forward neuronal network. Phys. Rev. Lett. 96, 018103 (2006)
Suffczynski, p, Kalitzina, S., Lopes Da Silva, F.H.: Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience 126, 467–484 (2004)
Cullheim, S., Thams, S.: The microglial networks of the brain and their role in neuronal network plasticity after lesion. Brain Res. Rev. 55, 89–96 (2007)
Wang, R., Zhang, Z.Z., Ma, J., et al.: Spectral properties of the temporal evolution of brain network structure. Chaos 25, 123112 (2015)
Bao, B.C., Liu, Z., Xu, J.P.: Steady periodic memristor oscillator with transient chaotic behaviors. Electron. Lett. 46, 228–230 (2010)
Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 20, 1335–1350 (2010)
Li, Q.D., Zeng, H.Z., Li, J.: Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria. Nonlinear Dyn. 79, 2295–2308 (2015)
Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58, 2038–2045 (2015)
Song, X.L., Jin, W.Y., Ma, J.: Energy dependence on the electric activities of a neuron. Chin. Phys. B 24, 128710 (2015)
Song, X.L., Wang, C.N., Ma, J., et al.: Transition of electric activity of neurons induced by chemical and electric autapses. Sci. China Technol. Sci. 58, 1007–1014 (2015)
Qin, H.X., Ma, J., Jin, W.Y., et al.: Dynamics of electrical activities in neuron and neurons of network induced by autapses. Sci. China Technol. Sci. 57, 936–946 (2014)
Yılmaz, E., Baysal, V., Perc, M., et al.: Enhancement of pacemaker induced stochastic resonance by an autapse in a scale-free neuronal network. Sci. China Technol. Sci. 59, 364–370 (2016)
Qin, H.X., Ma, J., Wang, C.N., et al.: Autapse-induced target wave, spiral wave in regular network of neurons. Sci. China Phys. Mech. Astron. 57, 1918–1926 (2014)
Ren, G.D., Wu, G., Ma, J.: Simulation of electric activity of neuron by setting up a reliable neuronal circuit driven by electric autapse. Acta Phys. Sin. 64, 058702 (2015). In Chinese
Ma, J., Chen, Z.Q., Wang, Z.L., et al.: A four-wing hyper-chaotic attractor generated from a 4-D memristive system with a line equilibrium. Nonlinear Dyn. 81, 1275–1288 (2015)
Chen, M., Li, M.Y., Yu, Q., et al.: Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua’s circuit. Nonlinear Dyn. 81, 215–226 (2015)
Pei, J.S., Wright, J.P., Todd, M.D., et al.: Understanding memristors and memcapacitors in engineering mechanics applications. Nonlinear Dyn. 80, 457–489 (2015)
Li, Q.D., Tang, S., Zeng, H.Z., et al.: On hyperchaos in a small memristive neural network. Nonlinear Dyn. 78, 1087–1099 (2014)
Pham, V.T., Jafari, S., Vaidyanathan, S., et al.: A novel memristive neural network with hidden attractors and its circuitry implementation. Sci. China Technol. Sci. 59, 358–363 (2016)
Wu, H.G., Bao, B.C., Liu, Z., et al.: Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator. Nonlinear Dyn. 83, 893–903 (2016)
Ma, J., Tang, J., Zhang, A.H., et al.: Robustness and breakup of the spiral wave in a two-dimensional lattice network of neurons. Sci. China Phys. Mech. Astron. 53, 672–679 (2010)