Model of boson and fermion particle masses

The European Physical Journal Plus - Tập 136 - Trang 1-12 - 2021
J. W. Moffat1,2
1Perimeter Institute for Theoretical Physics, Waterloo, Canada
2Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada

Tóm tắt

The boson and fermion particle masses are calculated in a finite quantum field theory. The field theory satisfies Poincaré invariance, unitarity and microscopic causality, and all loop graphs are finite to all orders of perturbation theory. The infinite derivative nonlocal field interactions are regularized with a mass (length) scale parameter $$\Lambda _i$$ . The W, Z and Higgs boson masses are calculated from finite one-loop self-energy graphs. The $$W^{\pm }$$ mass is predicted to be $$M_W=80.05$$ GeV, and the higher order radiative corrections to the Higgs boson mass $$m_\mathrm{H}=125$$ GeV are damped out above the regulating mass scale parameter $$\Lambda _H=1.57$$ TeV. The three generations of quark and lepton masses are calculated from finite one-loop self-interactions, and there is an exponential spacing in mass between the quarks and leptons.

Tài liệu tham khảo

S. Weinberg, Phys. Rev. D101, 035020 (2020), arXiv:2001.06582 J.W. Moffat, Phys. Rev. D 39, 3654 (1989) J.W. Moffat, Phys. Rev. D 41, 1177 (1990) D. Evens, J.W. Moffat, G. Kleppe, R.P. Woodard, Phys. Rev. D 43, 499 (1991) J.W. Moffat, Mod. Phys. Lett. 6, 1011 (1991) M. Clayton, J.W. Moffat, Mod. Phys. Lett. 6, 2697 (1991) J.W. Moffat, S.M. Robbins, Mod. Phys. Lett. A 6, 1581 (1991) B.J. Hand, J.W. Moffat, Phys. Rev. D 43, 1896 (1991) G. Kleppe, R.P. Woodard, Phys. Lett. B 253, 331 (1991) G. Kleppe, R.P. Woodard, Nucl. Phys. B 388, 81 (1992) B.J. Hand, Phys. Lett. B 275, 419 (1992) N.J. Cornish, Mod. Phys. Lett. 7, 631 (1992) N.J. Cornish, Mod. Phys. Lett. 7, 1895 (1992) N.J. Cornish, Int. J. Mod. Phys. A 7, 6121 (1992) G. Kleppe, R.P. Woodard, Ann. Phys. 221, 106 (1993) M.A. Clayton, L. Demopolous, J.W. Moffat, Int. J. Mod. Phys. A 9, 4549 (1994) J. Paris, Nucl. Phys. B 450, 357 (1995) J. Paris, W. Troost, Nucl. Phys. B 482, 373 (1996) J. W. Moffat, arXiv:hep-ph/9802228 J. W. Moffat, arXiv:07099.4269 J. W. Moffat and V. T. Toth, arXiv:0812.1991 J. W. Moffat, Eur. Phys. J. Plus 134, 443 (2019), arXiv:1812.01986 P. Higgs, Phys. Lett. 12, 132 (1964) F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964) G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Phys. Rev. Lett. 13, 585 (1964) P. Higgs, Phys. Rev. 145, 1156 (1966) T.W.B. Kibble, Phys. Rev. 155, 1554 (1967) F. Halzen, A.D. Martin, Quarks and Leptons: An Introductory Course in Modern Particle Physics (Wiley, Hoboken, 1984). C.P. Burgess, G.D. Moore, The Standard Model: A Primer (Cambridge University Press, Cambridge, 2007). A. Kusenko, P. Langacker, Phys. Lett. 391, 29 (1997). arXiv:hep-ph/9608340 A. V. Bednyakov et al. Phys. Rev. Lett. 115, 201802 (2015), arXiv:1507.08833 M. Gouzevitch, A. Carvalho, Rev. Phys. 5, 100039 (2020) I thank S. Ogarkov for helpful correspondence Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)