Model of bending of a hydrostatically compressed shell near its stability threshold

Journal of Applied Mechanics and Technical Physics - Tập 48 Số 6 - Trang 878-886 - 2007
В. В. Киселев1, Д. В. Долгих1
1Institute of Metal Physics, Ural Division, Russian Academy of Sciences, Ekaterinburg, 620219

Tóm tắt

Từ khóa


Tài liệu tham khảo

A. S. Vol’mir, Stability of Elastic Systems [in Russian], Fizmatgiz, Moscow (1963).

A. V. Pogorelov, Geometric Methods in the Nonlinear Theory of Elastic Shells [in Russian], Nauka, Moscow (1967).

F. D. Murnaghan, Finite Deformation of an Elastic Solid, Wiley-Chapman and Hall, New York-London (1951).

A. I. Lur’ye, Nonlinear Theory of Elasticity [in Russian], Nauka, Moscow (1980).

L. D. Landau and E. M. Lifshits, Theory of Elasticity, Pergamon Press, Oxford-New York (1970).

R. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, London (1982).

A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Cambridge Univ. Press, Cambridge (1927).

A. S. Vol’mir, Nonlinear Dynamics of Plates and Shells [in Russian], Nauka, Moscow (1972).

Kh. M. Mushtari, Nonlinear Theory of Shells [in Russian], Nauka, Moscow (1990).

D. V. Dolgikh and V. V. Kiselev, “Two-dimensional model of strong bendings of a nonlinearly elastic plate,” Prikl. Mat. Mekh., 67,No. 2, 300–314 (2003).

D. V. Dolgikh and V. V. Kiselev, “Solitons with transverse corrugation in a three-layer nonlinearly elastic medium,” Prikl. Mat. Mekh., 68,No. 6, 1049–1066 (2004).

V. V. Kiselev and D. V. Dolgikh, “Patterns composed of dents on the surface of a longitudinally compressed nonlinearly elastic cylindrical shell,” Prikl. Mat. Mekh., 71,No. 3, 500–525 (2007).

P. Rosenau and J. M. Hyman, “Compactons: Solitons with finite wavelength,” Phys. Rev. Lett., 70,No. 5, 564–567 (1993).