Model of bending of a hydrostatically compressed shell near its stability threshold
Tóm tắt
Từ khóa
Tài liệu tham khảo
A. S. Vol’mir, Stability of Elastic Systems [in Russian], Fizmatgiz, Moscow (1963).
A. V. Pogorelov, Geometric Methods in the Nonlinear Theory of Elastic Shells [in Russian], Nauka, Moscow (1967).
F. D. Murnaghan, Finite Deformation of an Elastic Solid, Wiley-Chapman and Hall, New York-London (1951).
A. I. Lur’ye, Nonlinear Theory of Elasticity [in Russian], Nauka, Moscow (1980).
L. D. Landau and E. M. Lifshits, Theory of Elasticity, Pergamon Press, Oxford-New York (1970).
R. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, London (1982).
A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Cambridge Univ. Press, Cambridge (1927).
A. S. Vol’mir, Nonlinear Dynamics of Plates and Shells [in Russian], Nauka, Moscow (1972).
Kh. M. Mushtari, Nonlinear Theory of Shells [in Russian], Nauka, Moscow (1990).
D. V. Dolgikh and V. V. Kiselev, “Two-dimensional model of strong bendings of a nonlinearly elastic plate,” Prikl. Mat. Mekh., 67,No. 2, 300–314 (2003).
D. V. Dolgikh and V. V. Kiselev, “Solitons with transverse corrugation in a three-layer nonlinearly elastic medium,” Prikl. Mat. Mekh., 68,No. 6, 1049–1066 (2004).
V. V. Kiselev and D. V. Dolgikh, “Patterns composed of dents on the surface of a longitudinally compressed nonlinearly elastic cylindrical shell,” Prikl. Mat. Mekh., 71,No. 3, 500–525 (2007).