Model incorporating multiple diffusion MRI features: development and validation of a radiomics-based model to predict adult-type diffuse gliomas grade
Tóm tắt
Từ khóa
Tài liệu tham khảo
GBD 2016 Brain and Other CNS Cancer Collaborators (2019) Global, regional, and national burden of brain and other CNS cancer, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18(4):376–393. https://doi.org/10.1016/S1474-4422(18)30468-X
Jiang T, Nam DH, Ram Z et al (2021) Clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett 499:60–72. https://doi.org/10.1016/j.canlet.2020.10.050
Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23(8):1231–1251. https://doi.org/10.1093/neuonc/noab106
Chuntova P, Chow F, Watchmaker PB et al (2021) Unique challenges for glioblastoma immunotherapy-discussions across neuro-oncology and non-neuro-oncology experts in cancer immunology. Meeting report from the 2019 SNO immuno-oncology think tank. Neuro Oncol 23(3):356–375. https://doi.org/10.1093/neuonc/noaa277
Smits M (2021) MRI biomarkers in neuro-oncology. Nat Rev Neurol 17(8):486–500. https://doi.org/10.1038/s41582-021-00510-y
Wang P, He J, Ma X et al (2022) Applying MAP-MRI to identify the WHO grade and main genetic features of adult-type diffuse gliomas: a comparison of three diffusion-weighted MRI models. Acad Radiol 30(7):1238–1246. https://doi.org/10.1016/j.acra.2022.10.009
Gao A, Zhang H, Yan X et al (2022) Whole-tumor histogram analysis of multiple diffusion metrics for glioma genotyping. Radiology 302(3):652–661. https://doi.org/10.1148/radiol.210820
Jiang R, Jiang S, Song S et al (2021) Laplacian-regularized mean apparent propagator-MRI in evaluating corticospinal tract injury in patients with brain glioma. Korean J Radiol 22(5):759–769. https://doi.org/10.3348/kjr.2020.0949
Saleem KS, Avram AV, Glen D et al (2021) High-resolution mapping and digital atlas of subcortical regions in the macaque monkey based on matched MAP-MRI and histology. Neuroimage 245:118759. https://doi.org/10.1016/j.neuroimage.2021.118759
Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14(12):749–762. https://doi.org/10.1038/nrclinonc.2017.141
Limkin EJ, Sun R, Dercle L et al (2017) Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann Oncol 28(6):1191–1206. https://doi.org/10.1093/annonc/mdx034
Jian A, Jang K, Manuguerra M, Liu S, Magnussen J, Di Ieva A (2021) Machine learning for the prediction of molecular markers in glioma on magnetic resonance imaging: a systematic review and meta-analysis. Neurosurgery 89(1):31–44. https://doi.org/10.1093/neuros/nyab103
He J, Ren J, Niu G et al (2022) Multiparametric MR radiomics in brain glioma: models comparation to predict biomarker status. BMC Med Imaging 22(1):137. https://doi.org/10.1186/s12880-022-00865-8
Halligan S, Menu Y, Mallett S (2021) Why did European Radiology reject my radiomic biomarker paper? How to correctly evaluate imaging biomarkers in a clinical setting. Eur Radiol 31(12):9361–9368. https://doi.org/10.1007/s00330-021-07971-1
Song Y, Zhang J, Zhang YD et al (2020) FeAture Explorer (FAE): A tool for developing and comparing radiomics models. PLoS One 15(8):e0237587. https://doi.org/10.1371/journal.pone.0237587
Calabrese E, Rudie JD, Rauschecker AM et al (2022) Combining radiomics and deep convolutional neural network features from preoperative MRI for predicting clinically relevant genetic biomarkers in glioblastoma. Neurooncol Adv 4(1):vdac060. https://doi.org/10.1093/noajnl/vdac060
Weller M, van den Bent M, Preusser M et al (2021) EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol 18(3):170–186. https://doi.org/10.1038/s41571-020-00447-z
Bobholz SA, Lowman AK, Barrington A et al (2020) Radiomic features of multiparametric MRI present stable associations with analogous histological features in patients with brain cancer. Tomography 6(2):160–169. https://doi.org/10.18383/j.tom.2019.00029
Ho Y, Pepyne D (2002) Simple explanation of the no-free-lunch theorem and its implications. J Optim Theory Appl 115:549–570. https://doi.org/10.1023/A:1021251113462
Ning L, Laun F, Gur Y et al (2015) Sparse reconstruction challenge for diffusion MRI: validation on a physical phantom to determine which acquisition scheme and analysis method to use? Med Image Anal 26(1):316–331. https://doi.org/10.1016/j.media.2015.10.012
Feng L, Liu Z, Li C et al (2022) Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study. Lancet Digit Health 4(1):e8–e17. https://doi.org/10.1016/S2589-7500(21)00215-6
Seow P, Hernowo AT, Narayanan V et al (2021) Neural fiber integrity in high- versus low-grade glioma using probabilistic fiber tracking. Acad Radiol 28(12):1721–1732. https://doi.org/10.1016/j.acra.2020.09.007
Barajas RF Jr, Hess CP, Phillips JJ et al (2013) Super-resolution track density imaging of glioblastoma: histopathologic correlation. AJNR Am J Neuroradiol 34(7):1319–1325. https://doi.org/10.3174/ajnr.A3400
Cruz Rivera S, Liu X, Chan AW et al (2020) Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. Nat Med 26(9):1351–1363. https://doi.org/10.1038/s41591-020-1037-7
Muftuler LT, Nencka AS, Koch KM (2022) Diffusion propagator metrics are biased when simultaneous multi-slice acceleration is used. Magn Reson Imaging 86:46–54. https://doi.org/10.1016/j.mri.2021.11.003