Model Nanoporous Supramolecular Structures Based on Carbon Nanotubes and Hydrocarbons for Methane and Hydrogen Adsorption
Tóm tắt
A procedure has been proposed for the self-assembly of carbon nanotubes into arrays with the use of coordinating molecules and the development of secondary porosity in the resulting supramolecular structures. Molecular dynamics has been employed to study the formation of such structures and determine the effective radius of pores formed in them. The average micropore sizes in the obtained supramolecular structures have been related to the sizes of coordinating molecules and their orientation with respect to nanotube surface. Adsorption of methane and hydrogen on such model systems has been calculated on the basis of the theory of volume filling of micropores. It has been shown that the porosity resulting from the organization of the nanotubes into arrays with the help of coordinating molecules makes it possible to accumulate methane and hydrogen at the level of the best model adsorbents.
Tài liệu tham khảo
Prajwal, B.P. and Ayappa, K.G., Adsorption, 2014, vol. 20, p. 769.
Dillon, A.C., Gennett, T., Alleman, J.L., Jones, K.M., Parilla, P.A., and Heben, M.J., Abstracts of Papers, Proceedings of the 2000 Hydrogen Program Review NREL/CP-570-28890.
Solar, C., Blanco, A.G., Vallone, A., and Sapag, K., in Natural Gas, Rijeka: InTech, 2010, p. 205.
Zacharia, R. and Rather, S.U., J. Nanomater., 2015, Article ID 914845.
Men’shchikov, I.E., Fomkin, A.A., Shkolin, A.V., Strizhenov, E.M., et al., Protection of Metals and Physical Chemistry of Surfaces. 2017, vol. 53, p. 780.
Thommes, M., Kaneko, K., Neimark, A.V., Oliver, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S.W., Pure Appl. Chem., 2015, vol. 87, p. 1051.
Anuchin, K.M., Fomkin, A.A., Korotych, A.P., and Tolmachev, A.M., Protection of Metals and Physical Chemistry of Surfaces, 2014, vol. 50, p. 173.
Fomkin, A.A., in Sovremennye problemy fizicheskoi khimii nanomaterialov (Current Problems of Physical Chemistry of Nanomaterials), Tsivadze, A.Yu., Ed., Moscow: OOO Izd. Gruppa “Granitsa,” 2008, p. 362.
Shkolin, A.V., Fomkin, A.A., Strizhenov, E.M., and Pulin, A.L., Protection of Metals and Physical Chemistry of Surfaces, 2014, vol. 50, p. 279.
Yakovlev, V.Yu. and Fomkin, A.A., Colloid J., 2009, vol. 71, p. 877.
Cao, D., Zhang, X., Chen, J., Wang, W., and Yun, J., J. Phys. Chem. B, 2003, vol. 107, p. 13286.
Wang, Q. and Johnson, J.K., J. Phys. Chem. B, 1999, vol. 103, p. 4809.
Vargaftik, N.B., Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei (Handbook on Thermophysical Properties of Gases and Liquids), Moscow: Nauka, 1972.
Pauling, L., The Nature of the Chemical Bond, New York: Cornell Univ. Press, 1960.
Kel’tsev, N.V., Osnovy adsorbtsionnoi tekhniki (Fundamentals of Adsorption Technique), Moscow: Khimiya, 1976.
Hirschfelder, J.O., Curtiss, C.F., and Bird, R., Molecular Theory of Gases and Liquids, New York: Wiley, 1954.
Shkolin, A.V. and Fomkin, A.A., Colloid J., 2017, vol. 79, p. 701.
Jorgensen, W.L., Maxwell, D.S., and Tirado-Rives, J., J. Am. Chem. Soc., 1996, vol. 118, p. 11225.
Tolmachev, A.M., Anuchin, K.M., Kryuchen-kova, N.G., and Fomkin, A.A., Protection of Metals and Physical Chemistry of Surfaces, 2011, vol. 47, p. 150.
Jorgensen, W.L., Maxwell, D.S., and Tirado-Rives, J., J. Am. Chem. Soc., 1996, vol. 118, p. 11225.
Andersen, H.C., J. Chem. Phys., 1980, vol. 72, p. 2384.
Frenkel, D. and Smit, B., Understanding Molecular Simulation: From Algorithms to Applications, San Diego: Academic, 2002.
Chandler, D., J. Chem. Phys., 1978, vol. 68, p. 2959.
Chen, J.H., Wong, D.S.H., Tan, C.S., Subramanian, R., Lira, C.T., and Orth, M., Ind. Eng. Chem. Res., 1997, vol. 36, p. 2808.
Shkolin, A.V. and Fomkin, A.A., Colloid J., 2016, vol. 78, p. 800.
Il’in, B.V., Priroda adsorbtsionnykh sil (The Nature of Adsorption Forces), Moscow: Gos. Izd. Tekh.-Teor. Lit., 1952.
Eletskii, A.V. and Smirnov, B.M., Usp. Fiz. Nauk, 1995, vol. 165, p. 977.
Dubinin, M.M., Adsorbtsiya i poristost’(Adsorption and Porosity), Moscow: VAKhZ, 1972.
Yakovlev, V.Yu., Shkolin, A.V., Fomkin, A.A., and Men’shchikov, I.E., Russ. J. Phys. Chem. A, 2018, vol. 92, p. 552.