Model Membrane Platforms for Biomedicine: Case Study on Antiviral Drug Development

Biointerphases - Tập 7 - Trang 1-20 - 2012
Joshua A. Jackman1,2, Nam-Joon Cho1,3,2,4
1School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
2Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore, Singapore
3School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
4Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, USA

Tóm tắt

As one of the most important interfaces in cellular systems, biological membranes have essential functions in many activities such as cellular protection and signaling. Beyond their direct functions, they also serve as scaffolds to support the association of proteins involved in structural support, adhesion, and transport. Unfortunately, biological processes sometimes malfunction and require therapeutic intervention. For those processes which occur within or upon membranes, it is oftentimes difficult to study the mechanism in a biologically relevant, membranous environment. Therefore, the identification of direct therapeutic targets is challenging. In order to overcome this barrier, engineering strategies offer a new approach to interrogate biological activities at membrane interfaces by analyzing them through the principles of the interfacial sciences. Since membranes are complex biological interfaces, the development of simplified model systems which mimic important properties of membranes can enable fundamental characterization of interaction parameters for such processes. We have selected the hepatitis C virus (HCV) as a model viral pathogen to demonstrate how model membrane platforms can aid antiviral drug discovery and development. Responsible for generating the genomic diversity that makes treating HCV infection so difficult, viral replication represents an ideal step in the virus life cycle for therapeutic intervention. To target HCV genome replication, the interaction of viral proteins with model membrane platforms has served as a useful strategy for target identification and characterization. In this review article, we demonstrate how engineering approaches have led to the discovery of a new functional activity encoded within the HCV nonstructural 5A protein. Specifically, its N-terminal amphipathic, α-helix (AH) can rupture lipid vesicles in a size-dependent manner. While this activity has a number of exciting biotechnology and biomedical applications, arguably the most promising one is in antiviral medicine. Based on the similarities between lipid vesicles and the lipid envelopes of virus particles, experimental findings from model membrane platforms led to the prediction that a range of medically important viruses might be susceptible to rupturing treatment with synthetic AH peptide. This hypothesis was tested and validated by molecular virology studies. Broad-spectrum antiviral activity of the AH peptide has been identified against HCV, HIV, herpes simplex virus, and dengue virus, and many more deadly pathogens. As a result, the AH peptide is the first in class of broad-spectrum, lipid envelope-rupturing antiviral agents, and has entered the drug pipeline. In summary, engineering strategies break down complex biological systems into simplified biomimetic models that recapitulate the most important parameters. This approach is particularly advantageous for membrane-associated biological processes because model membrane platforms provide more direct characterization of target interactions than is possible with other methods. Consequently, model membrane platforms hold great promise for solving important biomedical problems and speeding up the translation of biological knowledge into clinical applications.

Tài liệu tham khảo

Popot JL, Engelman DM (2000) Annu Rev Biochem 69:881–922 Simons K, Toomre D (2000) Natl Rev Mol Cell Biol 1(1):31–39 Singer SJ, Nicolson GL (1972) Science 175(23):720–731 Israelachvili JN, Marcelja S, Horn RG (1980) Q Rev Biophys 13(2):121–200 Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Natl Rev Mol Cell Biol 2(11):793–805 Smith A-S (2010) Nat Phys 6(10):726–729 Hediger MA, Romero MF, Peng JB, Rolfs A, Takanaga H, Bruford EA (2004) Pflugers Arch 447(5):465–468 Yildirim MA, Goh KI, Cusick ME, Barabasi AL, Vidal M (2007) Nat Biotechnol 25(10):1119–1126 Haywood AM (1994) J Virol 68(1):1–5 Miller S, Krijnse-Locker J (2008) Nat Rev Microbiol 6(5):363–374 Salaita K, Nair PM, Petit RS, Neve RM, Das D, Gray JW, Groves JT (2010) Science 327(5971):1380–1385 Eckert DM, Kim PS (2001) Annu Rev Biochem 70:777–810 Jackman JA, Cho N-J, Duran RS, Frank CW (2009) Langmuir 26(6):4103–4112 Garcia ML (2004) Nature 430(6996):153–155 Mouritsen OG, Jörgensen K (1998) Pharm Res 15(10):1507–1519 Turk B (2006) Nat Rev Drug Discov 5(9):785–799 Arkin MR, Wells JA (2004) Nat Rev Drug Discov 3(4):301–317 Tamm LK, Lai AL, Li Y (2007) Biochim Biophys Acta 1768(12):3052–3060 Wang G (2008) Curr Protein Pept Sci 9(1):50–69 Mariappan M, Mateja A, Dobosz M, Bove E, Hegde RS, Keenan RJ (2011) Nature 477(7362):61–66 Tanford C, Reynolds JA (1976) Biochim Biophys Acta 457(2):133–170 Ferrari E, Wright-Minogue J, Fang JW, Baroudy BM, Lau JY, Hong Z (1999) J Virol 73(2):1649–1654 Yamashita T, Kaneko S, Shirota Y, Qin W, Nomura T, Kobayashi K, Murakami S (1998) J Biol Chem 273(25):15479–15486 Hook F, Kasemo B, Grunze M, Zauscher S (2008) ACS Nano 2(12):2428–2436 Grate JW, Frye GC (1996) Sens Update 2(1):37–83 Cooper MA (2002) Nat Rev Drug Discov 1(7):515–528 Moskovits M (1985) Rev Mod Phys 57(3):783 Wang J (2005) Analyst 130(4):421–426 Mrksich M (2008) ACS Nano 2(1):7–18 Dufrene YF (2008) Nat Rev Micro 6(9):674–680 Whitesides GM, Grzybowski B (2002) Science 295(5564):2418–2421 Castner DG, Ratner BD (2002) Surf Sci 500(1–3):28–60 Kasemo B (2002) Surf Sci 500(1–3):656–677 Sackmann E (1996) Science 271(5245):43–48 Chan Y-HM, Boxer SG (2007) Curr Opin Chem Biol 11(6):581–587 Kiessling V, Domanska MK, Murray D, Wan C, Tamm LK (2008) In: Wiley encyclopedia of chemical biology, vol 4. Wiley, Hoboken, pp 411–422 Nair PM, Salaita K, Petit RS, Groves JT (2011) Nat Protoc 6(4):523–539 Bayley H, Cremer PS (2001) Nature 413(6852):226–230 Castellana ET, Cremer PS (2006) Surf Sci Rep 61:429–444 Cho NJ, Cho SJ, Cheong KH, Glenn JS, Frank CW (2007) J Am Chem Soc 129(33):10050–10051 Cho NJ, Dvory-Sobol H, Xiong A, Cho SJ, Frank CW, Glenn JS (2009) ACS Chem Biol 4(12):1061–1067 Cho NJ, Kanazawa KK, Glenn JS, Frank CW (2007) Anal Chem 79(18):7027–7035 Cho NJ, Wang G, Edvardsson M, Glenn JS, Hook F, Frank CW (2009) Anal Chem 81(12):4752–4761 Bobardt MD, Cheng G, de Witte L, Selvarajah S, Chatterji U, Sanders-Beer BE, Geijtenbeek TB, Chisari FV, Gallay PA (2008) Proc Natl Acad Sci USA 105(14):5525–5530 Cheng G, Montero A, Gastaminza P, Whitten-Bauer C, Wieland SF, Isogawa M, Fredericksen B, Selvarajah S, Gallay PA, Ghadiri MR, Chisari FV (2008) Proc Natl Acad Sci USA 105(8):3088–3093 de Witte L, Bobardt MD, Chatterji U, van Loenen FB, Verjans GM, Geijtenbeek TB, Gallay PA (2011) PLoS One 6(5):e18917 Morens DM, Folkers GK, Fauci AS (2004) Nature 430(6996):242–249 De Clercq E (2002) Nat Rev Drug Discov 1(1):13–25 De Clercq E (2007) Nat Rev Drug Discov 6(12):1001–1018 Penin F, Dubuisson J, Rey FA, Moradpour D, Pawlotsky JM (2004) Hepatology 39(1):5–19 Murray CL, Jones CT, Rice CM (2008) Nat Rev Microbiol 6(9):699–708 Lindenbach BD, Rice CM (2005) Nature 436(7053):933–938 Moradpour D, Penin F, Rice CM (2007) Nat Rev Microbiol 5(6):453–463 Froshauer S, Kartenbeck J, Helenius A (1988) J Cell Biol 107(6 Pt 1):2075–2086 Egger D, Wolk B, Gosert R, Bianchi L, Blum HE, Moradpour D, Bienz K (2002) J Virol 76(12):5974–5984 Suhy DA, Giddings TH Jr, Kirkegaard K (2000) J Virol 74(19):8953–8965 Gosert R, Egger D, Lohmann V, Bartenschlager R, Blum HE, Bienz K, Moradpour D (2003) J Virol 77(9):5487–5492 Gelman MA, Glenn JS (2010) Trends Mol Med 17(1):34–46 Rong L, Dahari H, Ribeiro RM, Perelson AS (2010) Sci Transl Med 2(30):30ra32 Enomoto N, Sakuma I, Asahina Y, Kurosaki M, Murakami T, Yamamoto C, Izumi N, Marumo F, Sato C (1995) J Clin Invest 96(1):224–230 Macdonald A, Harris M (2004) J Gen Virol 85(Pt 9):2485–2502 Sklan EH, Staschke K, Oakes TM, Elazar M, Winters M, Aroeti B, Danieli T, Glenn JS (2007) J Virol 81(20):11096–11105 Elazar M, Cheong KH, Liu P, Greenberg HB, Rice CM, Glenn JS (2003) J Virol 77(10):6055–6061 Brass V, Bieck E, Montserret R, Wolk B, Hellings JA, Blum HE, Penin F, Moradpour D (2002) J Biol Chem 277(10):8130–8139 Schmitz U, Tan SL (2008) Recent Pat Antiinfect Drug Discov 3(2):77–92 Tellinghuisen TL, Marcotrigiano J, Rice CM (2005) Nature 435(7040):374–379 Penin F, Brass V, Appel N, Ramboarina S, Montserret R, Ficheux D, Blum HE, Bartenschlager R, Moradpour D (2004) J Biol Chem 279(39):40835–40843 Tanaka M, Sackmann E (2005) Nature 437(7059):656–663 Tamm LK, McConnell HM (1985) Biophys J 47(1):105–113 Keller CA, Kasemo B (1998) Biophys J 75(3):1397–1402 Zwang TJ, Fletcher WR, Lane TJ, Johal MS (2010) Langmuir 26(7):4598–4601 Jung LS, Shumaker-Parry JS, Campbell CT, Yee SS, Gelb MH (2000) J Am Chem Soc 122(17):4177–4184 Anderson TH, Min Y, Weirich KL, Zeng H, Fygenson D, Israelachvili JN (2009) Langmuir 25(12):6997–7005 Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ, Evans PR, McMahon HT (2004) Science 303(5657):495–499 Reimhult E, Hook F, Kasemo B (2002) J Chem Phys 117:7401–7404 Reimhult E, Hook F, Kasemo B (2002) Langmuir 19(5):1681–1691 Mie Y, Suzuki M, Komatsu Y (2009) J Am Chem Soc 131(19):6646–6647 Jadhav SR, Sui D, Garavito RM, Worden RM (2008) J Colloid Interface Sci 322(2):465–472 Weiss SA, Bushby RJ, Evans SD, Henderson PJ, Jeuken LJ (2009) Biochem J 417(2):555–560 Cho NJ, Cheong KH, Lee C, Frank CW, Glenn JS (2007) J Virol 81(12):6682–6689 Rodahl M, Hook F, Fredriksson C, Keller CA, Krozer A, Brzezinski P, Voinova M, Kasemo B (1997) Faraday Discuss 107:229–246 Cho NJ, Frank CW, Kasemo B, Hook F (2010) Nat Protoc 5(6):1096–1106 Dixon MC (2008) J Biomol Tech 19(3):151–158 Mechler A, Praporski S, Atmuri K, Boland M, Separovic F, Martin LL (2007) Biophys J 93(11):3907–3916 Glasmastar K, Larsson C, Hook F, Kasemo B (2002) J Colloid Interface Sci 246(1):40–47 Richter R, Mukhopadhyay A, Brisson A (2003) Biophys J 85(5):3035–3047 Tyagi M, Rusnati M, Presta M, Giacca M (2001) J Biol Chem 276(5):3254–3261 Mingeot-Leclercq MP, Deleu M, Brasseur R, Dufrene YF (2008) Nat Protoc 3(10):1654–1659 Matsuzaki K, Murase O, Miyajima K (1995) Biochemistry 34(39):12553–12559 Benachir T, Monette M, Grenier J, Lafleur M (1997) Eur Biophys J 25(3):201–210 Hook F, Kasemo B, Nylander T, Fant C, Sott K, Elwing H (2001) Anal Chem 73(24):5796–5804 Voinova MV et al (1999) Physica Scripta 59(5):391 Hatzakis NS, Bhatia VK, Larsen J, Madsen KL, Bolinger PY, Kunding AH, Castillo J, Gether U, Hedegard P, Stamou D (2009) Nat Chem Biol 5(11):835–841 Wang G, Rodahl M, Edvardsson M, Svedhem S, Ohlsson G, Hook F, Kasemo B (2008) Rev Sci Instrum 79(7):075107 Edvardsson M, Svedhem S, Wang G, Richter R, Rodahl M, Kasemo B (2008) Anal Chem 81(1):349–361 Aloia RC, Tian H, Jensen FC (1993) Proc Natl Acad Sci USA 90(11):5181–5185 Baker KA, Dutch RE, Lamb RA, Jardetzky TS (1999) Mol Cell 3(3):309–319 Calisher CH, Gould EA (2003) Adv Virus Res 59:1–19 Harris A, Cardone G, Winkler DC, Heymann JB, Brecher M, White JM, Steven AC (2006) Proc Natl Acad Sci USA 103(50):19123–19127 Kohno T, Goto T, Takasaki T, Morita C, Nakaya T, Ikuta K, Kurane I, Sano K, Nakai M (1999) J Virol 73(1):760–766 Cho N-J, Jackman JA, Liu M, Frank CW (2011) Langmuir 27(7):3739–3748 Joanne P, Nicolas P, El Amri C (2009) Protein Pept Lett 16(7):743–750 Shai Y (2000) Biosci Rep 20(6):535–555 Jenssen H, Hamill P, Hancock RE (2006) Clin Microbiol Rev 19(3):491–511 Jaeckel E, Cornberg M, Wedemeyer H, Santantonio T, Mayer J, Zankel M, Pastore G, Dietrich M, Trautwein C, Manns MP (2001) N Engl J Med 345(20):1452–1457 Li GR, He LY, Liu XY, Liu AP, Huang YB, Qiu C, Zhang XY, Xu JQ, Yang W, Chen YX (2011) Chem Biol Drug Des 78(5):835–843 Lin Q, Fang D, Hou X, Le Y, Fang J, Wen F, Gong W, Chen K, Wang JM, Su SB (2011) J Immunol 186(4):2087–2094 Palomares-Jerez MF, Guillen J, Villalain J (2010) Biochim Biophys Acta 1798(6):1212–1224 Wolf MC, Freiberg AN, Zhang T, Akyol-Ataman Z, Grock A, Hong PW, Li J, Watson NF, Fang AQ, Aguilar HC, Porotto M, Honko AN, Damoiseaux R, Miller JP, Woodson SE, Chantasirivisal S, Fontanes V, Negrete OA, Krogstad P, Dasgupta A, Moscona A, Hensley LE, Whelan SP, Faull KF, Holbrook MR, Jung ME, Lee B (2010) Proc Natl Acad Sci USA 107(7):3157–3162 Holthuis JC, Levine TP (2005) Natl Rev Mol Cell Biol 6(3):209–220 McNeil PL, Steinhardt RA (2003) Annu Rev Cell Dev Biol 19:697–731 McNeil PL, Terasaki M (2001) Nat Cell Biol 3(5):E124–E129 Meldolesi J (2003) J Cell Mol Med 7(3):197–203 St Vincent MR, Colpitts CC, Ustinov AV, Muqadas M, Joyce MA, Barsby NL, Epand RF, Epand RM, Khramyshev SA, Valueva OA, Korshun VA, Tyrrell DL, Schang LM (2010) Proc Natl Acad Sci USA 107(40):17339–17344 Boriskin YS, Pecheur EI, Polyak SJ (2006) Virol J 3:56 Shi L, Xiong H, He J, Deng H, Li Q, Zhong Q, Hou W, Cheng L, Xiao H, Yang Z (2007) Arch Virol 152(8):1447–1455 Teissier E, Zandomeneghi G, Loquet A, Lavillette D, Lavergne JP, Montserret R, Cosset FL, Bockmann A, Meier BH, Penin F, Pecheur EI (2011) PLoS One 6(1):e15874 Villalain J (2010) J Phys Chem B 114(25):8544–8554 Gao M, Nettles RE, Belema M, Snyder LB, Nguyen VN, Fridell RA, Serrano-Wu MH, Langley DR, Sun JH, O’Boyle DR 2nd, Lemm JA, Wang C, Knipe JO, Chien C, Colonno RJ, Grasela DM, Meanwell NA, Hamann LG (2010) Nature 465(7294):96–100 Fridell RA, Qiu D, Valera L, Wang C, Rose RE, Gao M (2011) J Virol 85(14):7312–7320 Fridell RA, Qiu D, Wang C, Valera L, Gao M (2010) Antimicrob Agents Chemother 54(9):3641–3650