Model Membrane Platforms for Biomedicine: Case Study on Antiviral Drug Development
Tóm tắt
As one of the most important interfaces in cellular systems, biological membranes have essential functions in many activities such as cellular protection and signaling. Beyond their direct functions, they also serve as scaffolds to support the association of proteins involved in structural support, adhesion, and transport. Unfortunately, biological processes sometimes malfunction and require therapeutic intervention. For those processes which occur within or upon membranes, it is oftentimes difficult to study the mechanism in a biologically relevant, membranous environment. Therefore, the identification of direct therapeutic targets is challenging. In order to overcome this barrier, engineering strategies offer a new approach to interrogate biological activities at membrane interfaces by analyzing them through the principles of the interfacial sciences. Since membranes are complex biological interfaces, the development of simplified model systems which mimic important properties of membranes can enable fundamental characterization of interaction parameters for such processes. We have selected the hepatitis C virus (HCV) as a model viral pathogen to demonstrate how model membrane platforms can aid antiviral drug discovery and development. Responsible for generating the genomic diversity that makes treating HCV infection so difficult, viral replication represents an ideal step in the virus life cycle for therapeutic intervention. To target HCV genome replication, the interaction of viral proteins with model membrane platforms has served as a useful strategy for target identification and characterization. In this review article, we demonstrate how engineering approaches have led to the discovery of a new functional activity encoded within the HCV nonstructural 5A protein. Specifically, its N-terminal amphipathic, α-helix (AH) can rupture lipid vesicles in a size-dependent manner. While this activity has a number of exciting biotechnology and biomedical applications, arguably the most promising one is in antiviral medicine. Based on the similarities between lipid vesicles and the lipid envelopes of virus particles, experimental findings from model membrane platforms led to the prediction that a range of medically important viruses might be susceptible to rupturing treatment with synthetic AH peptide. This hypothesis was tested and validated by molecular virology studies. Broad-spectrum antiviral activity of the AH peptide has been identified against HCV, HIV, herpes simplex virus, and dengue virus, and many more deadly pathogens. As a result, the AH peptide is the first in class of broad-spectrum, lipid envelope-rupturing antiviral agents, and has entered the drug pipeline. In summary, engineering strategies break down complex biological systems into simplified biomimetic models that recapitulate the most important parameters. This approach is particularly advantageous for membrane-associated biological processes because model membrane platforms provide more direct characterization of target interactions than is possible with other methods. Consequently, model membrane platforms hold great promise for solving important biomedical problems and speeding up the translation of biological knowledge into clinical applications.
Tài liệu tham khảo
Popot JL, Engelman DM (2000) Annu Rev Biochem 69:881–922
Simons K, Toomre D (2000) Natl Rev Mol Cell Biol 1(1):31–39
Singer SJ, Nicolson GL (1972) Science 175(23):720–731
Israelachvili JN, Marcelja S, Horn RG (1980) Q Rev Biophys 13(2):121–200
Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Natl Rev Mol Cell Biol 2(11):793–805
Smith A-S (2010) Nat Phys 6(10):726–729
Hediger MA, Romero MF, Peng JB, Rolfs A, Takanaga H, Bruford EA (2004) Pflugers Arch 447(5):465–468
Yildirim MA, Goh KI, Cusick ME, Barabasi AL, Vidal M (2007) Nat Biotechnol 25(10):1119–1126
Haywood AM (1994) J Virol 68(1):1–5
Miller S, Krijnse-Locker J (2008) Nat Rev Microbiol 6(5):363–374
Salaita K, Nair PM, Petit RS, Neve RM, Das D, Gray JW, Groves JT (2010) Science 327(5971):1380–1385
Eckert DM, Kim PS (2001) Annu Rev Biochem 70:777–810
Jackman JA, Cho N-J, Duran RS, Frank CW (2009) Langmuir 26(6):4103–4112
Garcia ML (2004) Nature 430(6996):153–155
Mouritsen OG, Jörgensen K (1998) Pharm Res 15(10):1507–1519
Turk B (2006) Nat Rev Drug Discov 5(9):785–799
Arkin MR, Wells JA (2004) Nat Rev Drug Discov 3(4):301–317
Tamm LK, Lai AL, Li Y (2007) Biochim Biophys Acta 1768(12):3052–3060
Wang G (2008) Curr Protein Pept Sci 9(1):50–69
Mariappan M, Mateja A, Dobosz M, Bove E, Hegde RS, Keenan RJ (2011) Nature 477(7362):61–66
Tanford C, Reynolds JA (1976) Biochim Biophys Acta 457(2):133–170
Ferrari E, Wright-Minogue J, Fang JW, Baroudy BM, Lau JY, Hong Z (1999) J Virol 73(2):1649–1654
Yamashita T, Kaneko S, Shirota Y, Qin W, Nomura T, Kobayashi K, Murakami S (1998) J Biol Chem 273(25):15479–15486
Hook F, Kasemo B, Grunze M, Zauscher S (2008) ACS Nano 2(12):2428–2436
Grate JW, Frye GC (1996) Sens Update 2(1):37–83
Cooper MA (2002) Nat Rev Drug Discov 1(7):515–528
Moskovits M (1985) Rev Mod Phys 57(3):783
Wang J (2005) Analyst 130(4):421–426
Mrksich M (2008) ACS Nano 2(1):7–18
Dufrene YF (2008) Nat Rev Micro 6(9):674–680
Whitesides GM, Grzybowski B (2002) Science 295(5564):2418–2421
Castner DG, Ratner BD (2002) Surf Sci 500(1–3):28–60
Kasemo B (2002) Surf Sci 500(1–3):656–677
Sackmann E (1996) Science 271(5245):43–48
Chan Y-HM, Boxer SG (2007) Curr Opin Chem Biol 11(6):581–587
Kiessling V, Domanska MK, Murray D, Wan C, Tamm LK (2008) In: Wiley encyclopedia of chemical biology, vol 4. Wiley, Hoboken, pp 411–422
Nair PM, Salaita K, Petit RS, Groves JT (2011) Nat Protoc 6(4):523–539
Bayley H, Cremer PS (2001) Nature 413(6852):226–230
Castellana ET, Cremer PS (2006) Surf Sci Rep 61:429–444
Cho NJ, Cho SJ, Cheong KH, Glenn JS, Frank CW (2007) J Am Chem Soc 129(33):10050–10051
Cho NJ, Dvory-Sobol H, Xiong A, Cho SJ, Frank CW, Glenn JS (2009) ACS Chem Biol 4(12):1061–1067
Cho NJ, Kanazawa KK, Glenn JS, Frank CW (2007) Anal Chem 79(18):7027–7035
Cho NJ, Wang G, Edvardsson M, Glenn JS, Hook F, Frank CW (2009) Anal Chem 81(12):4752–4761
Bobardt MD, Cheng G, de Witte L, Selvarajah S, Chatterji U, Sanders-Beer BE, Geijtenbeek TB, Chisari FV, Gallay PA (2008) Proc Natl Acad Sci USA 105(14):5525–5530
Cheng G, Montero A, Gastaminza P, Whitten-Bauer C, Wieland SF, Isogawa M, Fredericksen B, Selvarajah S, Gallay PA, Ghadiri MR, Chisari FV (2008) Proc Natl Acad Sci USA 105(8):3088–3093
de Witte L, Bobardt MD, Chatterji U, van Loenen FB, Verjans GM, Geijtenbeek TB, Gallay PA (2011) PLoS One 6(5):e18917
Morens DM, Folkers GK, Fauci AS (2004) Nature 430(6996):242–249
De Clercq E (2002) Nat Rev Drug Discov 1(1):13–25
De Clercq E (2007) Nat Rev Drug Discov 6(12):1001–1018
Penin F, Dubuisson J, Rey FA, Moradpour D, Pawlotsky JM (2004) Hepatology 39(1):5–19
Murray CL, Jones CT, Rice CM (2008) Nat Rev Microbiol 6(9):699–708
Lindenbach BD, Rice CM (2005) Nature 436(7053):933–938
Moradpour D, Penin F, Rice CM (2007) Nat Rev Microbiol 5(6):453–463
Froshauer S, Kartenbeck J, Helenius A (1988) J Cell Biol 107(6 Pt 1):2075–2086
Egger D, Wolk B, Gosert R, Bianchi L, Blum HE, Moradpour D, Bienz K (2002) J Virol 76(12):5974–5984
Suhy DA, Giddings TH Jr, Kirkegaard K (2000) J Virol 74(19):8953–8965
Gosert R, Egger D, Lohmann V, Bartenschlager R, Blum HE, Bienz K, Moradpour D (2003) J Virol 77(9):5487–5492
Gelman MA, Glenn JS (2010) Trends Mol Med 17(1):34–46
Rong L, Dahari H, Ribeiro RM, Perelson AS (2010) Sci Transl Med 2(30):30ra32
Enomoto N, Sakuma I, Asahina Y, Kurosaki M, Murakami T, Yamamoto C, Izumi N, Marumo F, Sato C (1995) J Clin Invest 96(1):224–230
Macdonald A, Harris M (2004) J Gen Virol 85(Pt 9):2485–2502
Sklan EH, Staschke K, Oakes TM, Elazar M, Winters M, Aroeti B, Danieli T, Glenn JS (2007) J Virol 81(20):11096–11105
Elazar M, Cheong KH, Liu P, Greenberg HB, Rice CM, Glenn JS (2003) J Virol 77(10):6055–6061
Brass V, Bieck E, Montserret R, Wolk B, Hellings JA, Blum HE, Penin F, Moradpour D (2002) J Biol Chem 277(10):8130–8139
Schmitz U, Tan SL (2008) Recent Pat Antiinfect Drug Discov 3(2):77–92
Tellinghuisen TL, Marcotrigiano J, Rice CM (2005) Nature 435(7040):374–379
Penin F, Brass V, Appel N, Ramboarina S, Montserret R, Ficheux D, Blum HE, Bartenschlager R, Moradpour D (2004) J Biol Chem 279(39):40835–40843
Tanaka M, Sackmann E (2005) Nature 437(7059):656–663
Tamm LK, McConnell HM (1985) Biophys J 47(1):105–113
Keller CA, Kasemo B (1998) Biophys J 75(3):1397–1402
Zwang TJ, Fletcher WR, Lane TJ, Johal MS (2010) Langmuir 26(7):4598–4601
Jung LS, Shumaker-Parry JS, Campbell CT, Yee SS, Gelb MH (2000) J Am Chem Soc 122(17):4177–4184
Anderson TH, Min Y, Weirich KL, Zeng H, Fygenson D, Israelachvili JN (2009) Langmuir 25(12):6997–7005
Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ, Evans PR, McMahon HT (2004) Science 303(5657):495–499
Reimhult E, Hook F, Kasemo B (2002) J Chem Phys 117:7401–7404
Reimhult E, Hook F, Kasemo B (2002) Langmuir 19(5):1681–1691
Mie Y, Suzuki M, Komatsu Y (2009) J Am Chem Soc 131(19):6646–6647
Jadhav SR, Sui D, Garavito RM, Worden RM (2008) J Colloid Interface Sci 322(2):465–472
Weiss SA, Bushby RJ, Evans SD, Henderson PJ, Jeuken LJ (2009) Biochem J 417(2):555–560
Cho NJ, Cheong KH, Lee C, Frank CW, Glenn JS (2007) J Virol 81(12):6682–6689
Rodahl M, Hook F, Fredriksson C, Keller CA, Krozer A, Brzezinski P, Voinova M, Kasemo B (1997) Faraday Discuss 107:229–246
Cho NJ, Frank CW, Kasemo B, Hook F (2010) Nat Protoc 5(6):1096–1106
Dixon MC (2008) J Biomol Tech 19(3):151–158
Mechler A, Praporski S, Atmuri K, Boland M, Separovic F, Martin LL (2007) Biophys J 93(11):3907–3916
Glasmastar K, Larsson C, Hook F, Kasemo B (2002) J Colloid Interface Sci 246(1):40–47
Richter R, Mukhopadhyay A, Brisson A (2003) Biophys J 85(5):3035–3047
Tyagi M, Rusnati M, Presta M, Giacca M (2001) J Biol Chem 276(5):3254–3261
Mingeot-Leclercq MP, Deleu M, Brasseur R, Dufrene YF (2008) Nat Protoc 3(10):1654–1659
Matsuzaki K, Murase O, Miyajima K (1995) Biochemistry 34(39):12553–12559
Benachir T, Monette M, Grenier J, Lafleur M (1997) Eur Biophys J 25(3):201–210
Hook F, Kasemo B, Nylander T, Fant C, Sott K, Elwing H (2001) Anal Chem 73(24):5796–5804
Voinova MV et al (1999) Physica Scripta 59(5):391
Hatzakis NS, Bhatia VK, Larsen J, Madsen KL, Bolinger PY, Kunding AH, Castillo J, Gether U, Hedegard P, Stamou D (2009) Nat Chem Biol 5(11):835–841
Wang G, Rodahl M, Edvardsson M, Svedhem S, Ohlsson G, Hook F, Kasemo B (2008) Rev Sci Instrum 79(7):075107
Edvardsson M, Svedhem S, Wang G, Richter R, Rodahl M, Kasemo B (2008) Anal Chem 81(1):349–361
Aloia RC, Tian H, Jensen FC (1993) Proc Natl Acad Sci USA 90(11):5181–5185
Baker KA, Dutch RE, Lamb RA, Jardetzky TS (1999) Mol Cell 3(3):309–319
Calisher CH, Gould EA (2003) Adv Virus Res 59:1–19
Harris A, Cardone G, Winkler DC, Heymann JB, Brecher M, White JM, Steven AC (2006) Proc Natl Acad Sci USA 103(50):19123–19127
Kohno T, Goto T, Takasaki T, Morita C, Nakaya T, Ikuta K, Kurane I, Sano K, Nakai M (1999) J Virol 73(1):760–766
Cho N-J, Jackman JA, Liu M, Frank CW (2011) Langmuir 27(7):3739–3748
Joanne P, Nicolas P, El Amri C (2009) Protein Pept Lett 16(7):743–750
Shai Y (2000) Biosci Rep 20(6):535–555
Jenssen H, Hamill P, Hancock RE (2006) Clin Microbiol Rev 19(3):491–511
Jaeckel E, Cornberg M, Wedemeyer H, Santantonio T, Mayer J, Zankel M, Pastore G, Dietrich M, Trautwein C, Manns MP (2001) N Engl J Med 345(20):1452–1457
Li GR, He LY, Liu XY, Liu AP, Huang YB, Qiu C, Zhang XY, Xu JQ, Yang W, Chen YX (2011) Chem Biol Drug Des 78(5):835–843
Lin Q, Fang D, Hou X, Le Y, Fang J, Wen F, Gong W, Chen K, Wang JM, Su SB (2011) J Immunol 186(4):2087–2094
Palomares-Jerez MF, Guillen J, Villalain J (2010) Biochim Biophys Acta 1798(6):1212–1224
Wolf MC, Freiberg AN, Zhang T, Akyol-Ataman Z, Grock A, Hong PW, Li J, Watson NF, Fang AQ, Aguilar HC, Porotto M, Honko AN, Damoiseaux R, Miller JP, Woodson SE, Chantasirivisal S, Fontanes V, Negrete OA, Krogstad P, Dasgupta A, Moscona A, Hensley LE, Whelan SP, Faull KF, Holbrook MR, Jung ME, Lee B (2010) Proc Natl Acad Sci USA 107(7):3157–3162
Holthuis JC, Levine TP (2005) Natl Rev Mol Cell Biol 6(3):209–220
McNeil PL, Steinhardt RA (2003) Annu Rev Cell Dev Biol 19:697–731
McNeil PL, Terasaki M (2001) Nat Cell Biol 3(5):E124–E129
Meldolesi J (2003) J Cell Mol Med 7(3):197–203
St Vincent MR, Colpitts CC, Ustinov AV, Muqadas M, Joyce MA, Barsby NL, Epand RF, Epand RM, Khramyshev SA, Valueva OA, Korshun VA, Tyrrell DL, Schang LM (2010) Proc Natl Acad Sci USA 107(40):17339–17344
Boriskin YS, Pecheur EI, Polyak SJ (2006) Virol J 3:56
Shi L, Xiong H, He J, Deng H, Li Q, Zhong Q, Hou W, Cheng L, Xiao H, Yang Z (2007) Arch Virol 152(8):1447–1455
Teissier E, Zandomeneghi G, Loquet A, Lavillette D, Lavergne JP, Montserret R, Cosset FL, Bockmann A, Meier BH, Penin F, Pecheur EI (2011) PLoS One 6(1):e15874
Villalain J (2010) J Phys Chem B 114(25):8544–8554
Gao M, Nettles RE, Belema M, Snyder LB, Nguyen VN, Fridell RA, Serrano-Wu MH, Langley DR, Sun JH, O’Boyle DR 2nd, Lemm JA, Wang C, Knipe JO, Chien C, Colonno RJ, Grasela DM, Meanwell NA, Hamann LG (2010) Nature 465(7294):96–100
Fridell RA, Qiu D, Valera L, Wang C, Rose RE, Gao M (2011) J Virol 85(14):7312–7320
Fridell RA, Qiu D, Wang C, Valera L, Gao M (2010) Antimicrob Agents Chemother 54(9):3641–3650
