Quản lý các Sáng kiến Chiến lược Dựa trên Mô hình

Journal on Data Semantics - Tập 4 - Trang 149-165 - 2014
Daniele Barone1, Liam Peyton2, Flavio Rizzolo3, Daniel Amyot2, John Mylopoulos4, Omar Badreddin5
1Rouge Valley Health System, Toronto, Canada
2School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada
3Statistics Canada, Ottawa, Canada
4Department of Information Engineering and Computer Science, University of Trento, Povo, Italy
5Electrical Engineering and Computer Science Department, Northern Arizona University, Flagstaff, USA

Tóm tắt

Để thích nghi với môi trường luôn thay đổi, các tổ chức đang phát triển các mục tiêu kinh doanh, quy trình và hoạt động của mình thông qua nhiều sáng kiến chiến lược khác nhau. Trong bối cảnh này, việc liên tục theo dõi hiệu suất và điều chỉnh khi có nhu cầu hoặc cơ hội là điều tối quan trọng đối với các tổ chức. Tập hợp các công nghệ cung cấp khả năng theo dõi này được gọi là trí tuệ doanh nghiệp (BI), và theo thời gian, nó đã trở thành một phần trung tâm trong hoạt động và quản trị doanh nghiệp. Thật không may, có một khoảng cách nhận thức lớn giữa góc độ yêu cầu của một sáng kiến chiến lược được trình bày dưới dạng mục tiêu kinh doanh, quy trình và hiệu suất ở một bên, và góc độ thực hiện của việc theo dõi BI được trình bày dưới dạng cơ sở dữ liệu, mạng lưới và xử lý tính toán. Trong bài báo này, chúng tôi trình bày một khung quản lý hiệu suất dựa trên mô hình để quản lý các sáng kiến chiến lược trong toàn bộ vòng đời phân tích, mô hình hóa, thực hiện và đánh giá nhằm thu hẹp khoảng cách nhận thức này. Chúng tôi minh họa tính hữu ích của nó thông qua một nghiên cứu điển hình tại một bệnh viện giảng dạy lớn, nơi đang thực hiện một sáng kiến chiến lược để giảm thiểu nhiễm trùng kháng kháng sinh.

Từ khóa

#Quản lý hiệu suất #trí tuệ doanh nghiệp #sáng kiến chiến lược #mô hình hóa #bệnh viện giảng dạy

Tài liệu tham khảo

Adya A, Blakeley JA, Melnik S, Muralidhar S (2007) Anatomy of the ado.net entity framework. In: Proceedings of the 2007 ACM SIGMOD international conference on Management of data. SIGMOD ’07ACM, New York, NY, USA, pp 877–888 Amyot D, Horkoff J, Gross D, Mussbacher G (2009) A lightweight GRL profile for i* modeling. In: ER Workshops, vol 5833, lecture notes in computer science. Springer, Berlin, Heidelberg, pp 254–264 Andersson B, Johannesson P, Zdravkovic J (2009) Aligning goals and services through goal and business modelling. Inf Syst E-Bus Manag 7(2):143–169 Barone D, Jiang L, Amyot D, Mylopoulos J (2011) Strategic models for business intelligence. In: Conceptual modeling—ER 2011, 30th International Conference on conceptual modeling, lecture notes in computer science, vol 6998. Springer, pp 429–439 Barone D, Mylopoulos J, Jiang L, Amyot D (2010) Business intelligence model, version 1.0. Tech. Rep. CSRG-607, University of Toronto, Canada. ftp://ftp.cs.toronto.edu/csri-technical-reports/INDEX.html Barone D, Peyton L, Rizzolo F, Amyot D, Mylopoulos J (2011) Towards model-based support for managing organizational transformation. In: Babin G, Stanoevska-Slabeva K, Kropf P (eds) MCETECH, lecture notes in business information processing, vol 78. Springer, pp 17–31 Barone D, Topaloglou T, Mylopoulos J (2012) Business intelligence modeling in action: a hospital case study. In: CAiSE 2012–24th Int. Conf. on advanced information aystems engineering, lecture notes in computer science, vol 7328. Springer, pp 502–517 Barone D, Yu ESK, Won J, Jiang L, Mylopoulos J (2010) Enterprise modeling for business intelligence. In: van Bommel P, Hoppenbrouwers S, Overbeek S, Proper E, Barjis J (eds) PoEM 2010—Third IFIP WG8.1 Working Conference on the practice of enterprise modelling, lecture notes in business information processing, vol 68. Springer, pp 31–45 Bell D, Cesare SD, Iacovelli N, Lycett M, Merico A (2007) A framework for deriving semantic web services. Inf Syst Front 9(1):69–84 Bititci U, Turner T, Begemann C (2000) Dynamics of performance measurement systems. Int J Oper Prod Manag 20(6):692–704 Bose R (2006) Understanding management data systems for enterprise performance management. Ind Manag Data Syst 106(1):43–59 Burgin AL, Koss E (1993) Transformation to high performance—a journey in organizational learning. Tech. Rep. No. 823, SRI International, USA Business Rules Group (2007) The business motivation model: business governance in a volatile world. Ver. 1.3. http://www.businessrulesgroup.org/bmm.shtml Chen PPS (1976) The entity-relationship model—toward a unified view of data. ACM Trans Database Syst 1(1):9–36 Cheung W, Babin G (2006) A metadatabase-enabled executive information system (part A): a flexible and adaptable architecture. DSS 42:1589–1598 Creech B (1994) The five pillars of TQM. Truman Talley Books/Dutton, New York Dalpiaz F, Barone D, Horkoff J, Jiang L, Mylopoulos J (2013) Bim-tool: modeling and reasoning support for strategic business models. In: Proceedings of the 6th International i* Workshop 2013 (iStar 2013), CEUR Workshop Proceedings, vol 978, pp 134–137 Dealtry TR (1994) Dynamic SWOT analysis. Dynamic SWOT Associates, Birmingam Dixon J, Nanni A, Vollmann T (1990) The new performance challenge—measuring operations for world-class competition. Dow Jones-Irwin, Homewood Galipeau J, Garritty C, Moher D (2010) What is known about the characteristics of antimicrobial stewardship programs and their implementation and effectiveness? Tech. rep, Ottawa Hospital Research Institute, Canada Galliers RD, Baets WRJ (eds) (1998) Information technology and organizational transformation: innovation for the 21st century organization. John Wiley Series in Information Systems Gangemi A, Guarino N, Masolo C, Oltramari A, Schneider L (2002) Sweetening ontologies with DOLCE. In: EKAW 2002, vol 2473, lecture notes in computer science. Springer, London, pp 166–181 Hevner AR, March ST, Park J, Ram S (2004) Design science in information systems research. MIS Quart 28(1):75–105 Horkoff J, Barone D, Jiang L, Yu E, Amyot D, Borgida A, Mylopoulos J (2012) Strategic business modeling: representation and reasoning. Softw Syst Model :1–27. doi:10.1007/s10270-012-0290-8 Horkoff J, Borgida A, Mylopoulos J, Barone D, Jiang L, Yu E, Amyot D (2012) Making data meaningful: the business intelligence model and its formal semantics in description logics. In: Proceedings of 11th Int. Conf. on Ontologies, DataBases, and applications of semantics (ODBASE 2012), lecture notes in computer science, vol 7565. Springer, pp 700–717 Howard RA, Matheson JE (2005) Influence diagrams. Decis Anal 2(3):127–143 Howson C (2006) BusinessObjects XI (release 2): the complete reference. McGraw-Hill, London Institute for Safe Medication Practices (2011) Ontario antimicrobial stewardship project. http://www.ismp-canada.org/abx/ International Telecommunication Union: Recommendation Z.151 (10/12) (2012) User requirements notation (URN)—language definition. http://www.itu.int/rec/T-REC-Z.151/en Kaplan RS, Norton DP (1996) Balanced Scorecard: translating strategy into action. Harvard Business School Press, Cambridge Kaplan RS (2004) Strategy maps: converting intangible assets into tangible outcomes. Harvard Business School Press, Cambridge Krishnapillai A (2009) Understanding key performance indicators through driver measures. Master’s thesis, SITE, University of Ottawa Kronz A (2006) Managing of process key performance indicators as part of the ARIS methodology. In: Corporate performance management. Springer, New York, pp 31–44 Lenzerini M (2002) Data integration: a theoretical perspective. In: Popa L (ed) 21st principles of database systems (PODS). ACM, London, pp 233–246 Malinowski E, Zimányi E (2004) OLAP hierarchies: a conceptual perspective. In: Persson A, Stirna J (eds) CAiSE, lecture notes in computer science, vol 3084. Springer, London, pp 477–491 Malinowski E, Zimányi E (2008) Advanced data warehouse design: from coventional to spatial and temporal applications. Springer, Berlin Mazzeo F, Capuano A, Avolio A, Filippelli A, Rossi F (2005) Hospital-based intensive monitoring of antibiotic-induced adverse events in a university hospital. Pharmacol Res 51(3):269–274 Melnik S, Adya A, Bernstein PA (2007) Compiling mappings to bridge applications and databases. In: SIGMOD. ACM, New York, pp 461–472 Nadler DA, Shaw RB, Walton AE (1994) Associates: discontinuous change: leading organizational transformation. Jossey-Bass, An Imprint of Wiley, New York Nargesian F (2011) Bridging decision applications and multidimensional databases. Master’s thesis, SITE, University of Ottawa Neely A, Adams C, Crowe P (2001) The performance prism in practice. Meas Bus Excell 5(2):6–12 Negash S (2004) Business intelligence. Commun Assoc Inf Syst 13(15):177–195 Otley D (1999) Performance management: a framework for management control system research. Manag Acc Res 10:363–382 Porter L, Oakland J, Gadd K (1998) Unlocking business performance with self-assessment. Manag Acc 76(8):35–37 Pourshahid A, Amyot D, Peyton L, Ghanavati S, Chen P, Weiss M, Forster AJ (2009) Business process management with the user requirements notation. Electron Commer Res 9(4):269–316 Rizzolo F, Kiringa I, Pottinger R, Wong K (2010) The conceptual integration modeling framework: abstracting from the multidimensional. In: CoRR abs/1009.0255, p 18 Salama S, Rotstein C, Mandell L (1996) A multidisciplinary hospital-based antimicrobial use program: impact on hospital pharmacy expenditures and drug use. Can J Infect Dis 7(2):104–109 van Solingen R, Basili V et al (2002) Goal question metric (gqm) approach. Encycl Softw Eng. doi:10.1002/0471028959.sof142 Villar C (2011) A goal-driven methodology for developing health care quality metrics. Master’s thesis, SITE, University of Ottawa Volitich D (2008) IBM Cognos 8 business intelligence: the official guide. McGraw-Hill, New York Vonderheide-Liem DN, Pate B (2004) Applying quality methodologies to improve healthcare: six sigma, lean thinking, balanced scorecard, and more. HCPro, Inc., London Watson HJ, Wixom BH (2007) The current state of business intelligence. Computer 40:96–99 Wongrassamee S, Simmons J, Gardiner P (2003) Performance measurement tools: the balanced scorecard and the efqm excellence model. Meas Bus Excell 7(1):14–29 Yu E (1997) Towards modelling and reasoning support for early-phase requirements engineering. In: 3rd IEEE Int., Symposium on requirements engineering, RE ’97IEEE Computer Society, Washington, USA, pp 226–235