Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control

Toxicon - Tập 49 Số 4 - Trang 423-435 - 2007
Alejandra Bravo1, Sarjeet S. Gill2, Mário Soberón1
1Departamento de Microbiología Molecular, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Apdo, Postal 510-3, Cuernavaca, Morelos 62250, Mexico
2Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abdullah, 2003, Introduction of Culex toxicity into Bacillus thuringiensis Cry4Ba by protein engineering, Appl. Environ. Microbiol., 69, 5343, 10.1128/AEM.69.9.5343-5353.2003

Abdullah, M.A.F., Valaitis, A.P., Dean, D.H., 2006. Identification of a Bacillus thuringiensis Cry11Ba toxin-binding aminopeptidase from mosquito, Anopheles quadrimaculatus. BMC Biochem. http://www.biomedcentral.com/1471-2091/7/16.

Angsuthanasombat, 1992, Comparison of Bacillus thuringiensis subsp. israelensis CryIVA and CryIVB cloned toxins reveals synergism in vivo, FEMS Microbiol. Lett., 73, 63, 10.1111/j.1574-6968.1992.tb05290.x

Angsuthanasombat, 1993, Effects on toxicity of eliminating a cleavage site in a predicted interhelical loop in Bacillus thuringiensis CryIVB delta-endotoxin, FEMS Microbiol. Lett., 111, 255

Armstrong, 1985, Delta endotoxin of Bacillus thuringiensis subsp. israelensis, J. Bacteriol., 161, 39, 10.1128/JB.161.1.39-46.1985

Aronson, 2001, Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action, FEMS Microbiol. Lett., 195, 1, 10.1111/j.1574-6968.2001.tb10489.x

Atsumi, 2005, Location of the Bombyx mori aminopeptidase N type I binding site on Bacillus thuringiensis Cry1Aa toxin, Appl. Environ. Microbiol., 71, 3966, 10.1128/AEM.71.7.3966-3977.2005

Bauce, 2004, Bacillus thuringiensis subsp kustaki aerial spray prescriptions for balsam fir stand protection against spruce budworm (Lepidoptera: Torticidae), J. Econ. Entomol., 97, 1624, 10.1603/0022-0493-97.5.1624

Becker, 2000, Bacterial control of vector-mosquitoes and black flies, 383

Berry, 2002, Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israeliensis, Appl. Environ. Microbiol., 68, 5082, 10.1128/AEM.68.10.5082-5095.2002

Boonserm, 2005, Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications, J. Mol. Biol., 348, 363, 10.1016/j.jmb.2005.02.013

Boonserm, 2006, Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-Å resolution, J. Bacteriol., 188, 3391, 10.1128/JB.188.9.3391-3401.2006

Bosch, 1994, Recombinant Bacillus thuringiensis insecticidal proteins with new properties for resistance management, Biotechnology, 12, 915, 10.1038/nbt0994-915

Bravo, 1997, Phylogenetic relationships of Bacillus thuringiensis δ-endotoxin family proteins and their functional domains, J. Bacteriol., 179, 2793, 10.1128/jb.179.9.2793-2801.1997

Bravo, 2002, N-terminal activation is an essential early step in the mechanism of action of the B. thuringiensis Cry1Ac insecticidal toxin, J. Biol. Chem., 277, 23985, 10.1074/jbc.C200263200

Bravo, 2004, Oligomerization triggers differential binding of a pore-forming toxin to a different receptor leading to efficient interaction with membrane microdomains, Biochem. Biophys. Acta., 1667, 38, 10.1016/j.bbamem.2004.08.013

Bravo, A., Gill, S.S., Soberón, M., 2005. Bacillus thuringiensis Mechanisms and Use In: Comprehensive Molecular Insect Science. Elsevier BV, Amsterdam, pp. 175–206.

Butko, 2003, Cytolytic toxin Cyt1A and its mechanism of membrane damage: Data and hypotheses Appl, Environ. Microbiol., 69, 2415, 10.1128/AEM.69.5.2415-2422.2003

Buzdin, 2002, Interaction of 65- and 62-kD proteins from the apical membranes of the Aedes aegypti larvae midgut epithelium with Cry4B and Cry11A endotoxins of Bacillus thuringiensis, Biochem (Moscow), 67, 540, 10.1023/A:1015594127636

Cabiaux, 1997, Interaction with a lipid membrane: a key step in bacterial toxins virulence, Int. J. Biol. Macromol., 21, 285, 10.1016/S0141-8130(97)00078-0

Chilcott, 1988, Comparative toxicity of Bacillus thuringiensis var. israelensis crystal proteins in vivo and in vitro, J. Gen. Microbiol., 134, 2551

Crickmore, N., Zeigler, D.R., Feitelson, J., Schnepf, E., van Rie, J., Lereclus, D., Baum, J., Dean, D.H., 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 807–813 http://www.biols.susx.ac.uk/Home/Neil_Crickmore/Bt/index.html

Dai, 1993, In vitro and in vivo proteolysis of the Bacillus thuringiensis subsp, israelensis CryIVD protein by Culex quinquefasciatus larval midgut proteases, Insect. Biochem. Mol. Biol., 23, 273, 10.1016/0965-1748(93)90008-G

Darboux, 2001, The receptor of Bacillus sphaericus binary toxin in Culex pipiens (Diptera: Culicidae) midgut: molecular cloning and expression, Insect. Biochem. Mol. Biol., 31, 981, 10.1016/S0965-1748(01)00046-7

de Maagd, 2000, Domain III substitution in Bacillus thuringiensis delta-endotoxin Cry1C domain III can function as a specific determinant for Spodoptera exigua in different, but not all, Cry1–Cry1C hybrids, Appl. Environ. Microbiol., 66, 1559, 10.1128/AEM.66.4.1559-1563.2000

de Maagd, 2001, How Bacillus thuringiensis has evolved specific toxins to colonize the insect world, Trends Genet., 17, 193, 10.1016/S0168-9525(01)02237-5

de Maagd, 2003, Structure, diversity and evolution of protein toxins from spore-forming entomopathogenic bacteria, Ann. Rev. Genet., 37, 409, 10.1146/annurev.genet.37.110801.143042

Dow, 1986, Insect midgut function, Adv. Insect Physiol., 19, 187, 10.1016/S0065-2806(08)60102-2

Fernández, L.E., Pérez, C., Segovia, L., Rodríguez, M.H., Gill, S.S., Bravo, A., Soberón, M., 2005. Cry11Aa toxin from Bacillus thuringiensis binds its receptor in Aedes aegypti mosquito larvae trough loop α-8 of domain II. FEBS Lett. 79, 3508–3514.

Fernández, 2006, A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae, Biochem. J., 394, 77, 10.1042/BJ20051517

Ferré, 2002, Biochemistry and genetics of insect resistance to Bacillus thuringiensis, Annu. Rev. Entomol., 47, 501, 10.1146/annurev.ento.47.091201.145234

Gahan, 2001, Identification of a gene associated with Bt resistance in Heliothis virescens, Science, 293, 857, 10.1126/science.1060949

Galitsky, 2001, Structure of the insecticidal bacterial δ-endotoxin CryBb1 of Bacillus thuringiensis, Acta Cryst. allogr D, 57, 1101, 10.1107/S0907444901008186

Georghiou, 1997, Influence of exposure to single versus multiple toxins of Bacillus thuringiensis subsp. israelensis on development of resistance in the mosquito Culex quinquefasciatus (Diptera: Culicidae), Appl. Environ. Microbiol., 63, 1095, 10.1128/AEM.63.3.1095-1101.1997

Gill, 1987, Cell membrane interaction of Bacillus thuringiensis subsp. israelensis cytolytic toxins, Infect. Immun., 55, 1300, 10.1128/IAI.55.5.1300-1308.1987

Gómez, 2001, Mapping the epitope in cadherin-like receptors involved in Bacillus thuringiensis Cry1A toxin interaction using phage display, J. Biol. Chem., 276, 28906, 10.1074/jbc.M103007200

Gómez, 2002, Hydropathic complementarity determines interaction of epitope 869HITDTNNK876 in Manduca sexta Bt-R1 receptor with loop 2 of domain II of Bacillus thuringiensis Cry1A toxins, J. Biol. Chem., 277, 30137, 10.1074/jbc.M203121200

Gómez, 2002, Cadherin-like receptor binding facilitates proteolytic cleavage of helix α-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin, FEBS Lett., 513, 242, 10.1016/S0014-5793(02)02321-9

Gómez, 2003, Molecular basis for Bacillus thuringiensis Cry1Ab toxin specificity: Two structural determinants in the Manduca sexta Bt-R1 receptor interact with loops α-8 and 2 in domain II of Cy1Ab toxin, Biochem, 42, 10482, 10.1021/bi034440p

Griffits, 2005, Glycolipids as receptors for Bacillus thuringiensis crystal toxin, Science, 307, 922, 10.1126/science.1104444

Grochulski, 1995, Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation, J. Mol. Biol., 254, 447, 10.1006/jmbi.1995.0630

Guillet, 1990, 187

Herrero, S., Gechev, T., Bakker, P.L., Moar, W.J., de Maagd, R.A., 2005. Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four aminopeptidase N genes, BMC Genomics, 6,96 Doi:10.11186/1471-2164/6/96.

Hua, 2004, Bt-R1a extracellular cadherin repeat 12 mediates Bacillus thuringiensis binding and cytotoxicity, J. Biol. Chem., 279, 28051, 10.1074/jbc.M400237200

Jenkins, 2000, Exploring the mechanism of action of insecticidal proteins by genetic engineering methods, 33

Jenkins, 2000, Bivalent sequential binding model of a Bacillus thuringiensis toxin to gypsy moth aminopeptidase N receptor, J. Biol. Chem., 275, 14423, 10.1074/jbc.275.19.14423

Jurat-Fuentes, 2004, Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae, Eur. J. Biochem., 271, 3127, 10.1111/j.1432-1033.2004.04238.x

Knight, 1994, The receptor for Bacillus thuringiensis CryIA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N, Mol. Microbiol., 11, 429, 10.1111/j.1365-2958.1994.tb00324.x

Komano, 1998, Activation process of the insecticidal proteins CrIVA and CryiVB produced by Bacillus thuringiensis subs israeliensis, Isr. J. Entomol., 32, 185

Koni, 1994, Biochemical characterization of Bacillus thuringiensis cytolytic δ-endotoxins, Microbiol, 140, 1869, 10.1099/13500872-140-8-1869

Li, 1991, Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5Å resolution, Nature, 353, 815, 10.1038/353815a0

Li, 1996, Structure of the mosquitocidal δ-endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation, J. Mol. Biol., 257, 129, 10.1006/jmbi.1996.0152

Lin, 2004, Crystal structures and electron micrographs of fungal valvotoxin A2, J. Mol. Biol., 343, 477, 10.1016/j.jmb.2004.08.045

Liu, 2006, Redesigning Bacillus thuringiensis Cry1Aa toxin into a mosquito toxin, Prot. Engineer. Des. Sel., 19, 107, 10.1093/protein/gzj009

Margalith, 2000, 243

Masson, 1995, The Cry1A(c) receptor purified from Manduca sexta displays multiple specificities, J. Biol. Chem., 270, 20309, 10.1074/jbc.270.35.20309

McNall, 2003, Identification of novel Bacillus thuringiensis Cry1Ac binding proteins in Manduca sexta midgut through proteomic analysis, Insect Biochem. Molec. Biol., 33, 999, 10.1016/S0965-1748(03)00114-0

Morin, S., Biggs, R.W., Shriver, L., Ellers-Kirk, C., Higginson, D., Holley, D., Gahan, Heckel, D.G., Carriere, Y., Dennehy, T.J., Brown, J.K., Tabashnik, B.E., 2003. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proc. Nat., Acad. Sci. 100, 5004–5009.

Morse, 2001, Structure of Cry2Aa suggests an unexpected receptor binding epitope, Structure, 9, 409, 10.1016/S0969-2126(01)00601-3

Muñoz-Garay, C., Sánchez, J., Darszon, A., de Maagd, R.A., Bakker, P., Soberón, M., Bravo, A., 2006. Permeability changes of Manduca sexta midgut brush border membranes induced by oligomeric structures of different Cry toxins. J. Membr. Biol., in press.

Pardo-López, L., Gómez, I., Rausell, C., Sánchez, J., Soberón, M., Bravo, A., 2006. Structural changes of the Cry1Ac oligomeric pre-pore from Bacillus thuringiensis induced by N-acetylgalactosamine facilitates toxin membrane insertion. Biochemistry 45, 10329–10336.

Parker, 2005, Pore-forming protein toxins: from structure to function, Progr. Biophys. Mol. Biol., 88, 91, 10.1016/j.pbiomolbio.2004.01.009

Pérez, 2005, Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor, Proc Natl. Acad. Sci., 102, 18303, 10.1073/pnas.0505494102

Promdonkoy, 2003, Investigation of the pore-forming mechanism of a cytolytic δ-endotoxin from Bacillus thuringiensis, Biochem. J., 374, 255, 10.1042/bj20030437

Qaim, 2003, Yield effects of genetically modified crops in developing countries, Science, 299, 900, 10.1126/science.1080609

Rausell, 2004, Tryptophan spectroscopy studies and black lipid bilayer analysis indicate that the oligomeric structure of Cry1Ab toxin from Bacillus thuringiensis is the membrane-insertion intermediate, Biochemistry, 43, 166, 10.1021/bi035527d

Rausell, 2004, Unfolding events in the water-soluble monomeric Cry1Ab toxin during transition to oligomeric pre-pore and membrane inserted pore channel, J. Biol. Chem., 279, 55168, 10.1074/jbc.M406279200

Rausell, 2004, Role of toxin activation on binding and pore formation activity of the Bacillus thuringiensis Cry3 toxins in membranes of Leptinotarsa decemlineata [Say], Biochem. Biophys. Acta, 1660, 99, 10.1016/j.bbamem.2003.11.004

Schuler, 1998, Insect-resistant transgenic plants, Trends Biotechnol., 16, 168, 10.1016/S0167-7799(97)01171-2

Schwartz, 1997, Ion channels formed in planar lipid bilayers by Bacillus thuringiensis toxins in the presence of Manduca sexta midgut receptors, FEBS Lett., 412, 270, 10.1016/S0014-5793(97)00801-6

Simons, 2000, Lipid rafts and signal transduction, Nat. Rev. Mol. Cell. Biol., 1, 31, 10.1038/35036052

Thomas, 1983, Mechanism of action of Bacillus thuringiensis var israelensis insecticidal delta-endotoxin, FEBS Lett., 154, 362, 10.1016/0014-5793(83)80183-5

Toenniessen, 2003, Advances in plant biotechnology and its adoption in developing countries, Curr. Opinion Plant Biol., 6, 191, 10.1016/S1369-5266(03)00002-5

Vadlamudi, 1995, Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis, J. Biol. Chem., 270, 5490, 10.1074/jbc.270.10.5490

Valaitis, 2001, Isolation and partial characterization of Gypsy moth BTR-270 an anionic brush border membrane glycoconjugate that binds Bacillus thuringiensis Cry1A toxins with high affinity, Arch. Ins. Biochem. Physiol., 46, 186, 10.1002/arch.1028

van Frankenhuyzen, 2000, Application of Bacillus thuringiensis in forestry, 371

Wirth, 1997, CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito, Culex quinquefasciatus, Proc. Natl. Acad. Sci., 94, 10536, 10.1073/pnas.94.20.10536

Xie, 2005, Single amino acid mutations in the cadherin receptor from Heliothis virescens affect its toxin binding ability to Cry1A toxins, J. Biol. Chem., 280, 8416, 10.1074/jbc.M408403200

Xu, 2005, Disruption of a cadherin gene associated with resistance to Cry1Ac delta-endotoxin of Bacillus thuringiensis in Helicoverpa armigera, Appl. Environ. Microbiol., 71, 948, 10.1128/AEM.71.2.948-954.2005

Yamagiwa, 2004, Functional analysis of two processed fragments of Bacillus thuringiensis Cry11A toxin, Biosci. Biotechnol. Biochem., 68, 523, 10.1271/bbb.68.523

Zhang, 2006, A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis, Proc. Natl. Acad. Sci., 103, 9897, 10.1073/pnas.0604017103

Zhuang, 2002, Heliothis virescens and Manduca sexta lipid rafts are involved in Cry1A toxin binding to the midgut epithelium and subsequent pore formation, J. Biol. Chem., 277, 13863, 10.1074/jbc.M110057200