Modal Analysis of Fluid Flows: Applications and Outlook

AIAA Journal - Tập 58 Số 3 - Trang 998-1022 - 2020
Kunihiko Taira1, Maziar S. Hemati2, Steven L. Brunton3, Yiyang Sun2, Karthik Duraisamy4, Shervin Bagheri5, Scott T. M. Dawson6, C. Yeh1
1University of California, Los Angeles, California 90095
2University of Minnesota, Minneapolis, Minnesota 55455;
3University of Washington, Seattle, Washington, 98195
4University of Michigan, Ann Arbor, Michigan, 48109
5Royal Institute of Technology (KTH), Stockholm 10444, Sweden
6Illinois Institute of Technology, Chicago, Illinois 60616

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.2514/1.J056060

10.1017/CBO9780511919701

10.1146/annurev.fl.25.010193.002543

10.1142/S0218127405012429

10.1063/1.2840197

10.1017/S0022112010001217

10.1017/S0022112009992059

10.3934/jcd.2014.1.391

10.1137/1.9781611974508

10.1146/annurev-fluid-011212-140652

10.1016/S0376-0421(02)00030-1

10.1146/annurev-fluid-122109-160705

10.1126/science.261.5121.578

10.1063/1.4793444

Zdravkovich M. M., 1997, Flow Around Circular Cylinders, Vol. 1: Fundamentals, 10.1093/oso/9780198563969.001.0001

Zdravkovich M. M., 2003, Flow Around Circular Cylinders, Vol 2: Applications, 10.1093/oso/9780198565611.001.0001

von Kármán T., 1911, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 509

RoshkoA. “On the Development of Turbulent Wakes from Vortex Streets,” NACA TR 1191, 1954.

10.1017/S0022112077000135

10.1017/S0022112077000147

10.1016/S0889-9746(88)90058-8

10.1146/annurev.fl.28.010196.002401

10.1017/S0022112061000950

10.1017/S0022112094004283

10.1017/S0022112007005654

Behara S., 2010, Physics of Fluids, 22, 10.1063/1.3500692

10.1017/jfm.2015.635

10.1146/annurev.fluid.36.050802.122128

10.1016/j.jfluidstructs.2004.02.005

10.1017/S0022112091001659

10.1063/1.1850151

10.1063/1.4772977

Taira K., 2018, Journal of Fluid Mechanics, 846, R2, 10.1017/jfm.2018.327

10.1016/j.jcp.2007.03.005

10.1016/j.cma.2007.08.014

10.1090/qam/910462

10.1007/s00332-012-9130-9

10.1017/jfm.2013.249

10.1007/s00348-011-1235-7

10.1007/s00162-017-0432-2

10.1007/s00348-016-2127-7

HematiM. S.DeemE. A.WilliamsM. O.RowleyC. W.CattafestaL. N. “Improving Separation Control with Noise-Robust Variants of Dynamic Mode Decomposition,” AIAA Paper 2016-1103, 2016.

10.1017/jfm.2019.163

10.1143/JPSJ.11.302

10.1017/S0022112090000933

10.1007/BF00127673

10.1017/S0022112087002234

Abdessemed N., 2009, Physics of Fluids, 21, 10.1063/1.3112738

10.1017/S0022112007008907

10.1017/S0022112087002222

10.1063/1.866925

10.1017/S0022112096008750

10.1017/S0022112096002777

10.1017/S0022112088001818

10.1007/978-3-7091-0758-4

10.1017/S0022112003006694

10.1016/j.jcp.2008.09.024

10.1063/1.857881

ZhangW.WeiM. “Model Order Reduction Using DMD Modes and Adjoint DMD Modes,” AIAA Paper 2017-3482, 2017.

Nair A. G., 2018, Physical Review E, 97

10.1017/jfm.2013.278

10.1137/140959602

10.1017/jfm.2014.736

10.1073/pnas.1517384113

10.1017/jfm.2017.823

10.1017/jfm.2018.147

Brunton S. L., 2020, Annual Review of Fluid Mechanics

10.1115/1.4031175

10.1017/S0022112071002842

10.1146/annurev.fluid.38.050304.092139

10.1007/978-1-4613-0185-1

10.1017/S0022112005004295

10.1146/annurev.fluid.39.050905.110153

10.1146/annurev-fluid-010816-060042

10.1137/0153002

10.1515/9780691213101

10.1109/TAC.1981.1102568

10.1017/S0022112009992655

BhattacharjeeD.HematiM.KloseB.JacobsG. “Optimal Actuator Selection for Airfoil Separation Control,” AIAA Paper 2018-3692, 2018.

YaoH.HematiM. “Advances in Output Feedback Control of Transient Energy Growth in a Linearized Channel Flow,” AIAA Paper 2019-0882, 2019.

10.1063/1.3540672

IlakM.RowleyC. “Feedback Control of Transitional Channel Flow Using Balanced Proper Orthogonal Decomposition,” AIAA Paper 2008-4230, 2008.

KalurA.HematiM. “Reduced-Order Models for Feedback Control of Transient Energy Growth,” AIAA Paper 2018-3690, 2018.

Kalur A., 2019, AIAA Journal

HematiM.YaoH. “Dynamic Mode Shaping for Fluid Flow Control: New Strategies for Transient Growth Suppression,” AIAA Paper 2017-3160, 2017.

10.2514/1.J056877

YaoH.HematiM. “Revisiting the Separation Principle for Improved Transition Control,” AIAA Paper 2018-3693, 2018.

10.1017/jfm.2015.84

10.1017/S0022112067000308

10.1017/S0022112006000607

10.1017/S0022112062000014

10.1017/S002211200100667X

10.1017/jfm.2013.286

10.1017/jfm.2013.457

Sharma A. S., 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375, 1

10.1063/1.858894

10.1017/S0022112010003629

10.1017/S002211201000176X

10.1017/S0022112093003738

10.1103/PhysRevFluids.3.053902

10.1017/jfm.2015.85

Chavarin A., 2019, AIAA Journal, 1

10.1017/jfm.2014.209

10.1017/jfm.2018.283

Lumley J. L., 1980, Transition and Turbulence, 215

10.1017/jfm.2016.331

10.1017/jfm.2018.129

10.1017/jfm.2016.682

10.1146/annurev.fluid.37.061903.175810

10.1017/S0022112008004394

10.1017/S0022112009991418

10.1017/S0022112007005496

10.1115/1.3077635

10.1017/jfm.2015.45

10.1007/s00348-016-2242-5

10.1017/jfm.2012.112

Iñigo J. G., 2016, Journal of Fluid Mechanics, 797, 130, 10.1017/jfm.2016.266

10.1017/S0022112098002055

Gopalakrishnan Meena M., 2017, AIAA Journal, 56, 1348, 10.2514/1.J056260

10.2514/6.2000-2545

Thomareis N., 2017, Physics of Fluids, 29, 10.1063/1.4973811

10.1017/S0022112096001929

10.1017/S0001924000005686

10.1017/jfm.2016.440

10.1017/jfm.2018.701

10.1017/jfm.2011.465

10.1017/jfm.2014.356

10.1063/1.4997202

10.2514/8.3305

10.2514/3.57965

10.2514/1.35237

10.1017/S0022112009006673

10.2514/1.C034044

RicciardiT. R.RibeiroJ. H. M.WolfW. R. “Analysis of Coherent Structures in Large-Eddy Simulations of a NACA0012 Airfoil,” AIAA Paper 2019-0320, 2019.

10.1260/147547209787548903

TheofilisV. “Global Instabilities and Control of Nonparallel Flows,” AIAA Paper 2002-3279, 2002.

10.1063/1.4945005

10.1017/jfm.2016.778

10.2514/3.45534

10.1063/1.3626407

10.1063/1.4879035

10.1017/jfm.2018.939

10.1016/S0376-0421(00)00008-7

10.2514/2.1662

10.2514/1.J056303

JovanovićM. R. “Modeling, Analysis, and Control of Spatially Distributed Systems,” Ph.D. Thesis, Dept. of Mechanical Engineering, Univ. of California, Santa Barbara, Santa Barbara, CA, 2004.

10.1016/j.crhy.2005.05.006

10.1017/S0022112008000694

10.1016/j.ast.2009.11.008

EdstrandA.CattafestaL. N. “Topology of a Trailing Vortex Flow Field with Steady Circulation Control Blowing,” AIAA Paper 2015-1706, 2015.

10.1007/s00162-016-0400-2

10.1016/j.paerosci.2010.11.002

RossiterJ. E. “Wind-Tunnel Experiments on the Flow over Rectangular Cavities at Subsonic and Transonic Speeds,” Aeronautical Research Council, TR 3438, 1964.

AhujaK. K.MendozaJ. “Effects of Cavity Dimensions, Boundary Layer and Temperature on Cavity Noise with Emphasis on Benchmark Data to Validate Computational Aeroacoustic Codes,” NASA TR 4653, Hampton, VA, 1995.

Murray N., 2009, Physics of Fluids, 21, 1661, 10.1063/1.3210772

10.1017/jfm.2016.540

10.1017/S0022112007009925

10.1017/jfm.2012.563

Vicente J., 2014, Journal of Fluid Mechanics, 748, 189, 10.1017/jfm.2014.126

10.1007/s00162-016-0412-y

10.1017/jfm.2017.416

LiuQ.SunY.CattafestaL. N.UkeileyL. S.TairaK. “Resolvent Analysis of Compressible Flows over a Long Rectangular Cavity,” AIAA Paper 2018-0588, 2018.

Qadri U. A., 2017, Physical Review Fluids, 2, 10.1103/PhysRevFluids.2.013902

10.1017/jfm.2013.519

10.2514/1.J052647

10.2514/1.J057413

10.1017/jfm.2016.391

ShawL.NorthcraftS. “Close Loop Active Control for Cavity Acoustics,” AIAA Paper 1999-1902, 1999.

Ukeiley L. S., 2004, AIAA Journal, 42, 77, 10.2514/1.9032

10.1007/s00348-014-1810-9

Ukeiley L., 2008, Journal of Aircraft, 44, 2118

10.1299/jfst.6.701

10.2514/1.J057012

10.2514/6.2015-1059

10.1007/s00348-012-1282-8

10.1017/S0022112009991418

RicciardiT. R.WolfW. R.KreitzmanJ.MoffittN. J.BentP. “An Assessment of High-Fidelity Flow Simulation Methodologies for Noise Prediction of Realistic Landing Gear Configurations,” AIAA Paper 2019-0003, 2019.

10.1017/jfm.2016.103

10.1126/science.290.5500.2323

10.2514/1.35374

Loiseau J.-C., 2019, Handbook of Model-Order Reduction, Volume 2: Applications, 1

10.1006/jcph.2002.7146

10.1016/0893-6080(89)90020-8

Krizhevsky A., 2012, Advances in Neural Information Processing Systems, 1097

10.1038/nature14539

Goodfellow I., 2016, Deep Learning

Wehmeyer C., 2018, Journal of Chemical Physics, 148, 10.1063/1.5011399

Mardt A., 2018, Nature Communications, 9

Otto S. E., 2019, SIAM Journal on Applied Dynamical Systems, 18, 558, 10.1137/18M1177846

10.1038/s41467-018-07210-0

10.1007/s11071-005-2824-x

10.1371/journal.pone.0150171

10.1017/9781108380690

10.1109/MCS.2018.2810460

10.1073/pnas.1808909115

10.1137/090771806

10.1063/1.4862303

10.2514/1.J053287

Bright I., 2013, Physics of Fluids, 25, 10.1063/1.4836815

10.1137/15M104565X

10.1137/15M1036713

Mahoney M. W., 2011, Foundations and Trends in Machine Learning, 3, 123

10.1137/080736417

10.1137/100804139

10.1002/nme.5499

10.1137/130932715

10.1017/jfm.2019.358

10.2514/1.J050471

Williams M. O., 2015, Journal of Computational Dynamics, 2, 247, 10.3934/jcd.2015005

10.1007/s00332-015-9258-5

Semeraro O., 2017, Physical Review Fluids, 2, 10.1103/PhysRevFluids.2.094605

Wan Z. Y., 2018, PloS One, 13, 1

Vlachas P. R., 2018, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474

10.1016/j.jcp.2017.11.039

10.1016/j.jcp.2018.10.045

10.1063/1.4927765

10.1016/j.jcp.2015.11.012

10.1017/jfm.2016.615

10.1016/j.jcp.2016.07.038

10.2514/1.J055595

Wang J.-X., 2017, Physical Review Fluids, 2

10.1017/jfm.2018.770

10.1146/annurev-fluid-010518-040547

Rudy S. H., 2017, Science Advances, 3

10.2514/1.J055193

Newman M., 2006, The Structure and Dynamics of Networks, 10.1515/9781400841356

10.1093/acprof:oso/9780199206650.001.0001

10.1017/jfm.2014.355

10.1017/jfm.2019.469

10.1017/jfm.2015.97

10.1017/jfm.2016.235

Meena M. G., 2018, Physical Review E, 97

10.1137/15M1013857

10.1007/s00332-015-9258-5

10.1063/1.4901016

10.1016/j.automatica.2018.03.046

Kaiser E., 2018, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474

DeemE.CattafestaL.YaoH.HematiM.ZhangH.RowleyC. “Experimental Implementation of Modal Approaches for Autonomous Reattachment of Separated Flows,” AIAA Paper 2018-1052, 2018.

WangZ. “Reduced-Order Modeling of Complex Engineering and Geophysical Flows: Analysis and Computations,” Ph.D. Thesis, Virginia Polytechnic Inst. and State Univ., Blacksburg, VA, 2012.

KalashnikovaI.ArunajatesanS.BaroneM. F.van Bloemen WaandersB. G.FikeJ. A. “Reduced Order Modeling for Prediction and Control of Large-Scale Systems,” Sandia National Lab., Rept. SAND2014-4693, Albuquerque, NM, May 2014.

10.1016/j.physd.2003.03.001

10.1090/qam/910462

10.1002/nme.3050

10.1016/j.jcp.2010.09.015

NoackB.PapasP.MonkewitzP. “Low-Dimensional Galerkin Model of a Laminar Shear-Layer,” École Polytechnique Fédérale de Lausanne Rept. 2002-01, Lausanne, Switzerland, 2002.

San O., 2015, Advances in Computational Mathematics, 41, 1289, 10.1007/s10444-015-9417-0

Bergmann M., 2009, Journal of Computational Physics, 228, 516, 10.1016/j.jcp.2008.09.024

Chorin A. J., 2013, Stochastic Tools for Mathematics and Science, 10.1007/978-1-4614-6980-3

Parish E. J., 2017, Physical Review Fluids, 2, 10.1103/PhysRevFluids.2.014604

10.1016/j.jcp.2017.07.053

Gouasmi A., 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473

10.1364/JOSAA.12.001657

10.1016/j.compfluid.2004.11.006

10.1016/j.crma.2004.08.006

10.1137/090766498

10.1137/110822724

10.1137/130924408

Avellaneda M., 1990, Communications in Mathematical Physics, 131, 381, 10.1007/BF02161420

10.1002/nme.4371

10.1016/j.jcp.2013.02.028