Mobility-enhanced thermoelectric performance in textured nanograin Bi2Se3, effect on scattering and surface-like transport

Materials Today Physics - Tập 24 - Trang 100669 - 2022
Samaneh Bayesteh1,2, Sebastian Sailler1, Heike Schlörb1, Ran He1, Gabi Schierning1,3, Kornelius Nielsch1,2,4, Nicolás Pérez1
1Institute for Metallic Materials, IFW-Dresden, 01069, Dresden, Germany
2Institute of Applied Physics, Dresden University of Technology, 01062, Dresden, Germany
3Department of Physics, Experimental Physics, University of Bielefeld, 33615, Bielefeld, Germany
4Institute of Materials Science, Dresden University of Technology, 01062, Dresden, Germany

Tài liệu tham khảo

Siddique, 2017, A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges, Renew. Sustain. Energy Rev., 73, 730, 10.1016/j.rser.2017.01.177 Bell, 2008, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science, 321, 1457, 10.1126/science.1158899 Rowe, 1995 Goldsmid, 1954, The use of semiconductors in thermoelectric refrigeration, Br. J. Appl. Phys., 5, 386, 10.1088/0508-3443/5/11/303 Venkatasubramanian, 2001, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 413, 597, 10.1038/35098012 Il Kim, 2015, Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics, Science, 348, 109, 10.1126/science.aaa4166 Heremans, 2017, Tetradymites as thermoelectrics and topological insulators, Nat. Rev. Mater., 2, 17049, 10.1038/natrevmats.2017.49 Dresselhaus, 1999, Low dimensional thermoelectric materials, Phys. Solid State, 41, 679, 10.1134/1.1130849 Witting, 2019, The thermoelectric properties of bismuth telluride, Adv. Electron. Mater., 5, 1800904, 10.1002/aelm.201800904 Hsu, 2004, Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit, Science (80-.), 303, 818, 10.1126/science.1092963 Dargusch, 2020, Thermoelectric generators: alternative power supply for wearable electrocardiographic systems, Adv. Sci., 7, 2001362, 10.1002/advs.202001362 Zhou, 2015, Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries, Nat. Photonics, 9, 409, 10.1038/nphoton.2015.78 Wang, 2017, Sable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layers, Nat. Energy, 2, 17046, 10.1038/nenergy.2017.46 Guo, 2018, Tunable quasi-one-dimensional ribbon enhanced light absorption in Sb2Se3 thin-film solar cells grown by close-space sublimation, Sol. RRL, 2, 1800128, 10.1002/solr.201800128 Hicks, 1993, Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B, 47, 16631, 10.1103/PhysRevB.47.16631 Hicks, 1993, Effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B Condens. Matter, 47, 12727, 10.1103/PhysRevB.47.12727 Harman, 2002, Quantum dot superlattice thermoelectric materials and devices, Science, 297, 2229, 10.1126/science.1072886 Zebarjadi, 2012, Perspectives on thermoelectrics: from fundamentals to device applications, Energy Environ. Sci., 5, 5147, 10.1039/C1EE02497C Hong, 2015, Enhanced thermoelectric performance of ultrathin Bi2Se3 nanosheets through thickness control, Adv. Electron. Mater., 1, 1500025, 10.1002/aelm.201500025 Mada, 2021, Thermoelectric characteristics of A single- crystalline topological insulator Bi2Se3 nanowire, Nanomaterials, 11, 819, 10.3390/nano11030819 Sun, 2012, Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting, J. Am. Chem. Soc., 134, 20294, 10.1021/ja3102049 Tang, 2015, Thermoelectric characterization of individual bismuth selenide topological insulator nanoribbons, Nanoscale, 7, 6683, 10.1039/C5NR00917K Nielsch, 2011, Thermoelectric nanostructures: from physical model systems towards nanograined composites, Adv. Energy Mater., 1, 713, 10.1002/aenm.201100207 Sun, 2015, Enhanced thermoelectric performance of nanostructured topological insulator Bi2Se3, Appl. Phys. Lett., 106, 10.1063/1.4907252 Zhang, 2009, Topological insulators in Bi2Se3, Bi2 Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys., 5, 438, 10.1038/nphys1270 Müchler, 2013, Topological insulators and thermoelectric materials, Phys. Status Solidi Rapid Res. Lett., 7, 91, 10.1002/pssr.201206411 Izadi, 2021, Interface-dominated topological transport in nanograined bulk Bi2Te3, Small, 17, 2103281, 10.1002/smll.202103281 Gooth, 2015, Thermoelectric performance of classical topological insulator nanowires, Semicond. Sci. Technol., 30, 10.1088/0268-1242/30/1/015015 Heremans, 2013, When thermoelectrics reached the nanoscale, Nat. Nanotechnol., 8, 471, 10.1038/nnano.2013.129 Dresselhaus, 2007, New directions for low-dimensional thermoelectric materials, Adv. Mater., 19, 1043, 10.1002/adma.200600527 Xu, 2014, Enhanced thermoelectric performance and anomalous seebeck effects in topological insulators, Phys. Rev. Lett., 112, 226801, 10.1103/PhysRevLett.112.226801 Liang, 2016, Maximizing the thermoelectric performance of topological insulator Bi2Te3 films in the few-quintuple layer regime, Nanoscale, 8, 8855, 10.1039/C6NR00724D Hamdou, 2015, Thermoelectric properties of band structure engineered topological insulator (Bi1-xSbx)2Te3 nanowires, Adv. Energy Mater., 5, 1500280, 10.1002/aenm.201500280 Shin, 2016, The surface-to-volume ratio: a key parameter in the thermoelectric transport of topological insulator Bi2Se3 nanowires, Nanoscale, 8, 13552, 10.1039/C6NR01716A Cha, 2012, Effects of magnetic doping on weak antilocalization in narrow Bi2Se3 nanoribbons, Nano Lett, 12, 4355, 10.1021/nl3021472 Kim, 2016, Quantum electrical transport properties of topological insulator Bi2Te3 nanowires, Curr. Appl. Phys., 16, 51, 10.1016/j.cap.2015.10.011 Liu, 2019, Topological nanomaterials, Nat. Rev. Mater., 4, 479, 10.1038/s41578-019-0113-4 Kong, 2010, Topological insulator nanowires and nanoribbons, Nano Lett, 10, 329, 10.1021/nl903663a Zhao, 2014, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature, 508, 373, 10.1038/nature13184 Li, 2021, Demonstration of valley anisotropy utilized to enhance the thermoelectric power factor, Nat. Commun., 12, 5408, 10.1038/s41467-021-25722-0 Madelung Toby, 2013, GSAS-II: the genesis of a modern open-source all purpose crystallography software package, J. Appl. Crystallogr., 46, 544, 10.1107/S0021889813003531 Chateigner, 2019, Quantitative texture analysis and combined analysis, Int. Tables Crystallogr. H, 555 Kim, 2012, Intrinsic electron-phonon resistivity of Bi 2Se 3 in the topological regime, Phys. Rev. Lett., 109, 166801, 10.1103/PhysRevLett.109.166801 Mazumder, 2021, A brief review of Bi2Se3 based topological insulator: from fundamentals to applications, J. Alloys Compd., 888, 161492, 10.1016/j.jallcom.2021.161492 Ryu, 2017, Thermoelectric power factor of Bi-Sb-Te and Bi-Te-Se alloys and doping strategy: first-principles study, J. Alloys Compd., 727, 1067, 10.1016/j.jallcom.2017.08.166 Chiatti, 2016, 2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes, Sci. Rep., 6, 27483, 10.1038/srep27483 Taskin, 2012, Manifestation of topological protection in transport properties of epitaxial Bi2Se3 thin films, Phys. Rev. Lett., 109, 10.1103/PhysRevLett.109.066803 Gracia-Abad, 2021, Omnipresence of weak antilocalization (Wal) in Bi2Se3 thin films: a review on its origin, Nanomaterials, 11, 1077, 10.3390/nano11051077 Dyck, 2002, Effect of Ni on the transport and magnetic properties of Co1-xNixSb3, Phys. Rev. B Condens. Matter, 65, 115204, 10.1103/PhysRevB.65.115204 Li, 2005, Thermoelectric properties of Te-doped CoSb3 by spark plasma sintering, J. Appl. Phys., 98, 10.1063/1.2067704 Shuai, 2017, Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties, Energy Environ. Sci., 10, 799, 10.1039/C7EE00098G Shi, 2011, Optimized thermoelectric properties of Mo3Sb7-xTex with significant phonon scattering by electrons, Energy Environ. Sci., 4, 4086, 10.1039/c1ee01406d Wang, 2015, On intensifying carrier impurity scattering to enhance thermoelectric performance in Cr-doped CeyCo4Sb12, Adv. Funct. Mater., 25, 6660, 10.1002/adfm.201502782 Xie, 2014, The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials, Sci. Rep., 4, 6888, 10.1038/srep06888 Cepellotti, 2021, Interband tunneling effects on materials transport properties using the first principles Wigner distribution, Mater. Today Phys., 19, 100412, 10.1016/j.mtphys.2021.100412 Shen, 2020, Optimizing thermoelectric properties of BiSe through Cu additive enhanced effective mass and phonon scattering, Rare Met, 39, 1374, 10.1007/s12598-020-01491-5 Gooth, 2018, Quantum materials for thermoelectricity, MRS Bull, 43, 187, 10.1557/mrs.2018.34 Xu, 2017, Topological insulators for thermoelectrics, Npj Quantum Mater, 2, 51, 10.1038/s41535-017-0054-3 Li, 2021, Enhanced thermoelectric performance of n-type Bi2Se3 nanosheets through sn doping, Nanomaterials, 11, 1827, 10.3390/nano11071827 Kim, 2011, Thickness-dependent bulk properties and weak antilocalization effect in topological insulator Bi2Se3, Phys. Rev. B Condens. Matter, 84, 10.1103/PhysRevB.84.073109 He, 2011, Impurity effect on weak antilocalization in the topological insulator Bi2Te3, Phys. Rev. Lett., 106, 166805, 10.1103/PhysRevLett.106.166805 Ando, 2013, Topological insulator materials, J. Phys. Soc. Japan., 82, 102001, 10.7566/JPSJ.82.102001 Matsuo, 2012, Weak antilocalization and conductance fluctuation in a submicrometer-sized wire of epitaxial Bi2Se3, Phys. Rev. B Condens. Matter, 85, 10.1103/PhysRevB.85.075440 Hikami, 1980, Spin-orbit interaction and magnetoresistance in the two dimensional random system, Prog. Theor. Phys., 63, 707, 10.1143/PTP.63.707 Lang, 2013, Competing weak localization and weak antilocalization in ultrathin topological insulators, Nano Lett, 13, 48, 10.1021/nl303424n