Mobility-enhanced thermoelectric performance in textured nanograin Bi2Se3, effect on scattering and surface-like transport
Tài liệu tham khảo
Siddique, 2017, A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges, Renew. Sustain. Energy Rev., 73, 730, 10.1016/j.rser.2017.01.177
Bell, 2008, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science, 321, 1457, 10.1126/science.1158899
Rowe, 1995
Goldsmid, 1954, The use of semiconductors in thermoelectric refrigeration, Br. J. Appl. Phys., 5, 386, 10.1088/0508-3443/5/11/303
Venkatasubramanian, 2001, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 413, 597, 10.1038/35098012
Il Kim, 2015, Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics, Science, 348, 109, 10.1126/science.aaa4166
Heremans, 2017, Tetradymites as thermoelectrics and topological insulators, Nat. Rev. Mater., 2, 17049, 10.1038/natrevmats.2017.49
Dresselhaus, 1999, Low dimensional thermoelectric materials, Phys. Solid State, 41, 679, 10.1134/1.1130849
Witting, 2019, The thermoelectric properties of bismuth telluride, Adv. Electron. Mater., 5, 1800904, 10.1002/aelm.201800904
Hsu, 2004, Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit, Science (80-.), 303, 818, 10.1126/science.1092963
Dargusch, 2020, Thermoelectric generators: alternative power supply for wearable electrocardiographic systems, Adv. Sci., 7, 2001362, 10.1002/advs.202001362
Zhou, 2015, Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries, Nat. Photonics, 9, 409, 10.1038/nphoton.2015.78
Wang, 2017, Sable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layers, Nat. Energy, 2, 17046, 10.1038/nenergy.2017.46
Guo, 2018, Tunable quasi-one-dimensional ribbon enhanced light absorption in Sb2Se3 thin-film solar cells grown by close-space sublimation, Sol. RRL, 2, 1800128, 10.1002/solr.201800128
Hicks, 1993, Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B, 47, 16631, 10.1103/PhysRevB.47.16631
Hicks, 1993, Effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B Condens. Matter, 47, 12727, 10.1103/PhysRevB.47.12727
Harman, 2002, Quantum dot superlattice thermoelectric materials and devices, Science, 297, 2229, 10.1126/science.1072886
Zebarjadi, 2012, Perspectives on thermoelectrics: from fundamentals to device applications, Energy Environ. Sci., 5, 5147, 10.1039/C1EE02497C
Hong, 2015, Enhanced thermoelectric performance of ultrathin Bi2Se3 nanosheets through thickness control, Adv. Electron. Mater., 1, 1500025, 10.1002/aelm.201500025
Mada, 2021, Thermoelectric characteristics of A single- crystalline topological insulator Bi2Se3 nanowire, Nanomaterials, 11, 819, 10.3390/nano11030819
Sun, 2012, Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting, J. Am. Chem. Soc., 134, 20294, 10.1021/ja3102049
Tang, 2015, Thermoelectric characterization of individual bismuth selenide topological insulator nanoribbons, Nanoscale, 7, 6683, 10.1039/C5NR00917K
Nielsch, 2011, Thermoelectric nanostructures: from physical model systems towards nanograined composites, Adv. Energy Mater., 1, 713, 10.1002/aenm.201100207
Sun, 2015, Enhanced thermoelectric performance of nanostructured topological insulator Bi2Se3, Appl. Phys. Lett., 106, 10.1063/1.4907252
Zhang, 2009, Topological insulators in Bi2Se3, Bi2 Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys., 5, 438, 10.1038/nphys1270
Müchler, 2013, Topological insulators and thermoelectric materials, Phys. Status Solidi Rapid Res. Lett., 7, 91, 10.1002/pssr.201206411
Izadi, 2021, Interface-dominated topological transport in nanograined bulk Bi2Te3, Small, 17, 2103281, 10.1002/smll.202103281
Gooth, 2015, Thermoelectric performance of classical topological insulator nanowires, Semicond. Sci. Technol., 30, 10.1088/0268-1242/30/1/015015
Heremans, 2013, When thermoelectrics reached the nanoscale, Nat. Nanotechnol., 8, 471, 10.1038/nnano.2013.129
Dresselhaus, 2007, New directions for low-dimensional thermoelectric materials, Adv. Mater., 19, 1043, 10.1002/adma.200600527
Xu, 2014, Enhanced thermoelectric performance and anomalous seebeck effects in topological insulators, Phys. Rev. Lett., 112, 226801, 10.1103/PhysRevLett.112.226801
Liang, 2016, Maximizing the thermoelectric performance of topological insulator Bi2Te3 films in the few-quintuple layer regime, Nanoscale, 8, 8855, 10.1039/C6NR00724D
Hamdou, 2015, Thermoelectric properties of band structure engineered topological insulator (Bi1-xSbx)2Te3 nanowires, Adv. Energy Mater., 5, 1500280, 10.1002/aenm.201500280
Shin, 2016, The surface-to-volume ratio: a key parameter in the thermoelectric transport of topological insulator Bi2Se3 nanowires, Nanoscale, 8, 13552, 10.1039/C6NR01716A
Cha, 2012, Effects of magnetic doping on weak antilocalization in narrow Bi2Se3 nanoribbons, Nano Lett, 12, 4355, 10.1021/nl3021472
Kim, 2016, Quantum electrical transport properties of topological insulator Bi2Te3 nanowires, Curr. Appl. Phys., 16, 51, 10.1016/j.cap.2015.10.011
Liu, 2019, Topological nanomaterials, Nat. Rev. Mater., 4, 479, 10.1038/s41578-019-0113-4
Kong, 2010, Topological insulator nanowires and nanoribbons, Nano Lett, 10, 329, 10.1021/nl903663a
Zhao, 2014, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature, 508, 373, 10.1038/nature13184
Li, 2021, Demonstration of valley anisotropy utilized to enhance the thermoelectric power factor, Nat. Commun., 12, 5408, 10.1038/s41467-021-25722-0
Madelung
Toby, 2013, GSAS-II: the genesis of a modern open-source all purpose crystallography software package, J. Appl. Crystallogr., 46, 544, 10.1107/S0021889813003531
Chateigner, 2019, Quantitative texture analysis and combined analysis, Int. Tables Crystallogr. H, 555
Kim, 2012, Intrinsic electron-phonon resistivity of Bi 2Se 3 in the topological regime, Phys. Rev. Lett., 109, 166801, 10.1103/PhysRevLett.109.166801
Mazumder, 2021, A brief review of Bi2Se3 based topological insulator: from fundamentals to applications, J. Alloys Compd., 888, 161492, 10.1016/j.jallcom.2021.161492
Ryu, 2017, Thermoelectric power factor of Bi-Sb-Te and Bi-Te-Se alloys and doping strategy: first-principles study, J. Alloys Compd., 727, 1067, 10.1016/j.jallcom.2017.08.166
Chiatti, 2016, 2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes, Sci. Rep., 6, 27483, 10.1038/srep27483
Taskin, 2012, Manifestation of topological protection in transport properties of epitaxial Bi2Se3 thin films, Phys. Rev. Lett., 109, 10.1103/PhysRevLett.109.066803
Gracia-Abad, 2021, Omnipresence of weak antilocalization (Wal) in Bi2Se3 thin films: a review on its origin, Nanomaterials, 11, 1077, 10.3390/nano11051077
Dyck, 2002, Effect of Ni on the transport and magnetic properties of Co1-xNixSb3, Phys. Rev. B Condens. Matter, 65, 115204, 10.1103/PhysRevB.65.115204
Li, 2005, Thermoelectric properties of Te-doped CoSb3 by spark plasma sintering, J. Appl. Phys., 98, 10.1063/1.2067704
Shuai, 2017, Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties, Energy Environ. Sci., 10, 799, 10.1039/C7EE00098G
Shi, 2011, Optimized thermoelectric properties of Mo3Sb7-xTex with significant phonon scattering by electrons, Energy Environ. Sci., 4, 4086, 10.1039/c1ee01406d
Wang, 2015, On intensifying carrier impurity scattering to enhance thermoelectric performance in Cr-doped CeyCo4Sb12, Adv. Funct. Mater., 25, 6660, 10.1002/adfm.201502782
Xie, 2014, The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials, Sci. Rep., 4, 6888, 10.1038/srep06888
Cepellotti, 2021, Interband tunneling effects on materials transport properties using the first principles Wigner distribution, Mater. Today Phys., 19, 100412, 10.1016/j.mtphys.2021.100412
Shen, 2020, Optimizing thermoelectric properties of BiSe through Cu additive enhanced effective mass and phonon scattering, Rare Met, 39, 1374, 10.1007/s12598-020-01491-5
Gooth, 2018, Quantum materials for thermoelectricity, MRS Bull, 43, 187, 10.1557/mrs.2018.34
Xu, 2017, Topological insulators for thermoelectrics, Npj Quantum Mater, 2, 51, 10.1038/s41535-017-0054-3
Li, 2021, Enhanced thermoelectric performance of n-type Bi2Se3 nanosheets through sn doping, Nanomaterials, 11, 1827, 10.3390/nano11071827
Kim, 2011, Thickness-dependent bulk properties and weak antilocalization effect in topological insulator Bi2Se3, Phys. Rev. B Condens. Matter, 84, 10.1103/PhysRevB.84.073109
He, 2011, Impurity effect on weak antilocalization in the topological insulator Bi2Te3, Phys. Rev. Lett., 106, 166805, 10.1103/PhysRevLett.106.166805
Ando, 2013, Topological insulator materials, J. Phys. Soc. Japan., 82, 102001, 10.7566/JPSJ.82.102001
Matsuo, 2012, Weak antilocalization and conductance fluctuation in a submicrometer-sized wire of epitaxial Bi2Se3, Phys. Rev. B Condens. Matter, 85, 10.1103/PhysRevB.85.075440
Hikami, 1980, Spin-orbit interaction and magnetoresistance in the two dimensional random system, Prog. Theor. Phys., 63, 707, 10.1143/PTP.63.707
Lang, 2013, Competing weak localization and weak antilocalization in ultrathin topological insulators, Nano Lett, 13, 48, 10.1021/nl303424n