Mobility analysis of the typical gait of a radial symmetrical six-legged robot

Mechatronics - Tập 21 - Trang 1133-1146 - 2011
Zhiying Wang1, Xilun Ding2, Alberto Rovetta3, Alessandro Giusti3
1Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China
2Space Robotic Research Lab of the School of Mechanical Engineering and Automation, Beihang University, Beijing, China
3Dipartimento di Meccanica Laboratorio di Robotica, Politecnico di Milano, Milan, Italy

Tài liệu tham khảo

Stoica A, Carbone G, Ceccarelli M, Pisla D. Cassino hexapod: experiences and new leg design. In: 2010 IEEE international conference on automation, quality and testing, robotics, AQTR 2010 – proceedings, vol. 3. Cluj-Napoca, Romania; 2010. p. 338–43. <http://doi.ieeecomputersociety.org/10.1109/AQTR.2010.5520756>. Wheeler D, Ch’avez-Clemente D, SunSpiral V. Footspring: a compliance model for the athlete family of robots. In: Proc of the 10th international symposium on articial intelligence, robotics and automation in space (i-SAIRAS), Sapporo, Japan; 2010. Yang, 1998, Closed form forward kinematics solution to a class of hexapod robots, IEEE Trans Robot Autom, 14, 503, 10.1109/70.678460 Howard, 1996, Kinematic analysis of a walking machine, Math Comput Simul Arch, 41, 525, 10.1016/0378-4754(95)00098-4 Lee, 1990, A study of instantaneous kinematics of walking machines, J Robot Autom, 5, 131 Berardi-Gonzalez CA, Martinez-Alfaro H. Kinematic simulator for an insect-like robot. In: IEEE int. conf. syst., man, cybern, vol. 2, Nagoya, Japan; 2003. p. 1846–51. Arai T, Koyachi N, Adachi H, Homma K. Integrated arm and leg mechanism and its kinematic analysis. In: IEEE int. conf. robot. autom., vol. 1, Nagoya, Japan; 1995. p. 994–9. Gao Y, Chen WH, Lu Z. Kinematic analysis and simulation of a cockroach robot. In: 2nd IEEE conf. industrial electronics and applications, ICIEA 2007, vol. 1; 2007. p. 1208–13. Shkolnik A, Tedrake R. Inverse kinematics for a point-foot quadruped robot with dynamic redundancy resolution. In: Robotics and automation, Roma, Italy; 2007. p. 4331–6. Kimura, 1990, Dynamics in dynamic walk of a quadruped robot, Adv Robot, 4, 283, 10.1163/156855390X00305 Qiu, 1995, Analysis of the dynamics of a six-legged vehicle, Int J Robot Res, 14, 1, 10.1177/027836499501400101 Zhao, 2000, Dynamic performance analysis of six-legged walking machines, Mech Mach Theory, 35, 155, 10.1016/S0094-114X(98)00069-X Huang QJ. Sliding mode control based on virtual suspension model for controlling posture and vibration of six-legged walking robot. In: IEEE int. conf. robotics and biomimetics, ROBIO 2006, Roma, Italy; 2006. p. 642–7. Chen WJ, Yao SH, Low KH. Modular formulation for dynamics of multi-legged robots. In: 8th int. conf. on advanced robotics ICAR’97, Roma, Italy; 1997. p. 279–84. Barreto JP, Trigo A, Menezes P, Dias J, Almeida AD. Fed-the free body diagram method.kinematic and dynamic modeling of a six leg robot. In: 5th international workshop on advanced motion control, AMC ’98, Coimbra; 1998. p. 423–484. Lee BH, Lee IK. The implementation of the gaits and body structure for hexapod robot. In: IEEE international symposium on industrial electronics (ISIE 2001); 2001. p. 1959–64. Chen, 2006 Porta, 2004, Reactive free-gait generation to follow arbitrary trajectories with an hexapod robot, Robot Auton Syst, 47, 187, 10.1016/j.robot.2004.04.001 Erden, 2008, Free gait generation with reinforcement learning for a six-legged robot, Robot Auton Syst, 56, 199, 10.1016/j.robot.2007.08.001 Yang, 1998, Fault-tolerant locomotion of the hexapod robot, IEEE Trans Syst Man Cybern Part B, 28, 109, 10.1109/3477.658585 Yang, 2000, A fault tolerant gait for an hexapod robot over uneven terrain, IEEE Trans Syst Man Cybern Part B, 30, 172, 10.1109/3477.826957 Yang, 2008, Omnidirectional walking of legged robots with a failed leg, Math Comput Modell, 47, 1372, 10.1016/j.mcm.2007.08.006 Zhang CD, Song SM. Turning gait of a quadrupedal walking machine. In: IEEE international conference on robotics and automation, vol. 3; 1991. p. 703–8. Marhefka D, Orin DE. Gait planning for energy efficiency in walking machines. In: Proceeding of the 1997 IEEE international conference on robotics and automation, Albuquerque, New Mexico; 1977. p. 474–80. Kar, 2001, Minimum energy force distribution for a walking robot, J Robot Syst, 18, 47, 10.1002/1097-4563(200102)18:2<47::AID-ROB1004>3.0.CO;2-S Erden, 2007, Analysis of wave gaits for energy efficiency, Auton Robot, 23, 213, 10.1007/s10514-007-9041-z Song, 1990, The optimally stable ranges of 2n-legged wave gaits, IEEE Trans Syst Man Cybern, 20, 888, 10.1109/21.105087 Song, 1989 Liao, 1988, On the stability properties of hexapod tripod gait, IEEE J Robot Autom, 4, 427, 10.1109/56.808 Yoneda K, Suzuki K, Kanayama Y. Gait and foot trajectory planning for versatile motions of a six-legged robot. In: IEEE international conference on robotics and automation; 1994. p. 1338–43. Preumont A, Alezandre P, Ghuys D. Gait analysis and implementation of a six leg walking machine. In: Fifth international conference on advanced robotics (91 ICAR); 1991. p. 941–5. Takahashi Y, Arai T, et al. Development of multi-limb robot with omnidirectional manipulability and mobility. In: Proceedings of the 2000 IEEE-RSJ international conference on intelligent robots and systems; 2000. p. 2012–7. Chu, 2002, Comparison between different model of hexapod robot in fault-tolerant gait, IEEE Trans Syst Man Cybern—Part A: Syst Humans, 32, 752, 10.1109/TSMCA.2002.807066 Lee, 1988, The kinematics of motion planning for multilegged vehicles over uneven terrain, IEEE Trans Robot Autom, 4, 204, 10.1109/56.2084 Celaya, 2002, A control structure for the locomotion of a legged robot on difficult terrain, IEEE Robot Autom Mag, 5, 43, 10.1109/100.692340 Sakakibara Y, Kan K, Hosoda Y. Foot trajectory for a quadruped walking machine. In: IROS’90, IEEE international workshop on intelligent robots and systems; 1990. p. 315–22. Wang, 2010, Analysis of typical locomotion of a symmetric hexapod robot, Robotica, 28, 893, 10.1017/S0263574709990725 Rovetta A, Wang ZY, Ding XL. Gait analysis and comparison of a hexapod robot. In: Chinese intelligent automation conference (CIAC’2009), Nanjing, China; 2009. Rovetta A, Ding XL. Next steps for robotic landers rovers and outposts. In: ILEWG 2006, Beijing, China; 2006. p. 23–7. Rovetta A. New progress on the novel robotics systems for moon exploration. In: ILEWG 2007, Sorrento; 2006. Selig, 1996 Murrary, 1994 McGhee, 1979, Adaptive locomotion of a multilegged robot over rough terrain, IEEE Trans Syst Man Cybern SMC-9, 176, 10.1109/TSMC.1979.4310180 Garcia, 2002, A comparative study of the stability margins for walking machines, Robotica, 20, 595, 10.1017/S0263574702004502 McGhee, 1968, On the stability properties of quadruped creeping gaits, Math Biosci, 3, 331, 10.1016/0025-5564(68)90090-4 Zhang, 1989, Gaits and geometry of a walking chair for the disabled, J Terramech, 26, 211, 10.1016/0022-4898(89)90037-2 Zhang, 1990, Stability analysis of wave-crab gaits of a quadruped, J Robot Syst, 7, 243, 10.1002/rob.4620070208 Wang XJ. A study of locomotion and force planning for multilegged walking robots. Ph.D. dissertation. Dept. Mech. Eng.&Sci., Huazhong Univ. of Tech.&Sci, Wuhan, China; 2005. Wang ZY, Ding XL, Rovetta A. Structure design and locomotion analysis of a novel robot for lunar exploration. In: Twelfth IFToMM world congress, Besancon, France; 2007. p. 1–5. Spenneberg D, Strack A, Hilljegerdes J, Zschenker H, Albrecht M, Backhaus T, et al. Aramies: a four-legged climbing and walking robot. In Proc. of the 10th international symposium on artificial intelligence, robotics and automation in space (i-SAIRAS), Sapporo, Japan; 2010.