Mobility analysis of the typical gait of a radial symmetrical six-legged robot
Tài liệu tham khảo
Stoica A, Carbone G, Ceccarelli M, Pisla D. Cassino hexapod: experiences and new leg design. In: 2010 IEEE international conference on automation, quality and testing, robotics, AQTR 2010 – proceedings, vol. 3. Cluj-Napoca, Romania; 2010. p. 338–43. <http://doi.ieeecomputersociety.org/10.1109/AQTR.2010.5520756>.
Wheeler D, Ch’avez-Clemente D, SunSpiral V. Footspring: a compliance model for the athlete family of robots. In: Proc of the 10th international symposium on articial intelligence, robotics and automation in space (i-SAIRAS), Sapporo, Japan; 2010.
Yang, 1998, Closed form forward kinematics solution to a class of hexapod robots, IEEE Trans Robot Autom, 14, 503, 10.1109/70.678460
Howard, 1996, Kinematic analysis of a walking machine, Math Comput Simul Arch, 41, 525, 10.1016/0378-4754(95)00098-4
Lee, 1990, A study of instantaneous kinematics of walking machines, J Robot Autom, 5, 131
Berardi-Gonzalez CA, Martinez-Alfaro H. Kinematic simulator for an insect-like robot. In: IEEE int. conf. syst., man, cybern, vol. 2, Nagoya, Japan; 2003. p. 1846–51.
Arai T, Koyachi N, Adachi H, Homma K. Integrated arm and leg mechanism and its kinematic analysis. In: IEEE int. conf. robot. autom., vol. 1, Nagoya, Japan; 1995. p. 994–9.
Gao Y, Chen WH, Lu Z. Kinematic analysis and simulation of a cockroach robot. In: 2nd IEEE conf. industrial electronics and applications, ICIEA 2007, vol. 1; 2007. p. 1208–13.
Shkolnik A, Tedrake R. Inverse kinematics for a point-foot quadruped robot with dynamic redundancy resolution. In: Robotics and automation, Roma, Italy; 2007. p. 4331–6.
Kimura, 1990, Dynamics in dynamic walk of a quadruped robot, Adv Robot, 4, 283, 10.1163/156855390X00305
Qiu, 1995, Analysis of the dynamics of a six-legged vehicle, Int J Robot Res, 14, 1, 10.1177/027836499501400101
Zhao, 2000, Dynamic performance analysis of six-legged walking machines, Mech Mach Theory, 35, 155, 10.1016/S0094-114X(98)00069-X
Huang QJ. Sliding mode control based on virtual suspension model for controlling posture and vibration of six-legged walking robot. In: IEEE int. conf. robotics and biomimetics, ROBIO 2006, Roma, Italy; 2006. p. 642–7.
Chen WJ, Yao SH, Low KH. Modular formulation for dynamics of multi-legged robots. In: 8th int. conf. on advanced robotics ICAR’97, Roma, Italy; 1997. p. 279–84.
Barreto JP, Trigo A, Menezes P, Dias J, Almeida AD. Fed-the free body diagram method.kinematic and dynamic modeling of a six leg robot. In: 5th international workshop on advanced motion control, AMC ’98, Coimbra; 1998. p. 423–484.
Lee BH, Lee IK. The implementation of the gaits and body structure for hexapod robot. In: IEEE international symposium on industrial electronics (ISIE 2001); 2001. p. 1959–64.
Chen, 2006
Porta, 2004, Reactive free-gait generation to follow arbitrary trajectories with an hexapod robot, Robot Auton Syst, 47, 187, 10.1016/j.robot.2004.04.001
Erden, 2008, Free gait generation with reinforcement learning for a six-legged robot, Robot Auton Syst, 56, 199, 10.1016/j.robot.2007.08.001
Yang, 1998, Fault-tolerant locomotion of the hexapod robot, IEEE Trans Syst Man Cybern Part B, 28, 109, 10.1109/3477.658585
Yang, 2000, A fault tolerant gait for an hexapod robot over uneven terrain, IEEE Trans Syst Man Cybern Part B, 30, 172, 10.1109/3477.826957
Yang, 2008, Omnidirectional walking of legged robots with a failed leg, Math Comput Modell, 47, 1372, 10.1016/j.mcm.2007.08.006
Zhang CD, Song SM. Turning gait of a quadrupedal walking machine. In: IEEE international conference on robotics and automation, vol. 3; 1991. p. 703–8.
Marhefka D, Orin DE. Gait planning for energy efficiency in walking machines. In: Proceeding of the 1997 IEEE international conference on robotics and automation, Albuquerque, New Mexico; 1977. p. 474–80.
Kar, 2001, Minimum energy force distribution for a walking robot, J Robot Syst, 18, 47, 10.1002/1097-4563(200102)18:2<47::AID-ROB1004>3.0.CO;2-S
Erden, 2007, Analysis of wave gaits for energy efficiency, Auton Robot, 23, 213, 10.1007/s10514-007-9041-z
Song, 1990, The optimally stable ranges of 2n-legged wave gaits, IEEE Trans Syst Man Cybern, 20, 888, 10.1109/21.105087
Song, 1989
Liao, 1988, On the stability properties of hexapod tripod gait, IEEE J Robot Autom, 4, 427, 10.1109/56.808
Yoneda K, Suzuki K, Kanayama Y. Gait and foot trajectory planning for versatile motions of a six-legged robot. In: IEEE international conference on robotics and automation; 1994. p. 1338–43.
Preumont A, Alezandre P, Ghuys D. Gait analysis and implementation of a six leg walking machine. In: Fifth international conference on advanced robotics (91 ICAR); 1991. p. 941–5.
Takahashi Y, Arai T, et al. Development of multi-limb robot with omnidirectional manipulability and mobility. In: Proceedings of the 2000 IEEE-RSJ international conference on intelligent robots and systems; 2000. p. 2012–7.
Chu, 2002, Comparison between different model of hexapod robot in fault-tolerant gait, IEEE Trans Syst Man Cybern—Part A: Syst Humans, 32, 752, 10.1109/TSMCA.2002.807066
Lee, 1988, The kinematics of motion planning for multilegged vehicles over uneven terrain, IEEE Trans Robot Autom, 4, 204, 10.1109/56.2084
Celaya, 2002, A control structure for the locomotion of a legged robot on difficult terrain, IEEE Robot Autom Mag, 5, 43, 10.1109/100.692340
Sakakibara Y, Kan K, Hosoda Y. Foot trajectory for a quadruped walking machine. In: IROS’90, IEEE international workshop on intelligent robots and systems; 1990. p. 315–22.
Wang, 2010, Analysis of typical locomotion of a symmetric hexapod robot, Robotica, 28, 893, 10.1017/S0263574709990725
Rovetta A, Wang ZY, Ding XL. Gait analysis and comparison of a hexapod robot. In: Chinese intelligent automation conference (CIAC’2009), Nanjing, China; 2009.
Rovetta A, Ding XL. Next steps for robotic landers rovers and outposts. In: ILEWG 2006, Beijing, China; 2006. p. 23–7.
Rovetta A. New progress on the novel robotics systems for moon exploration. In: ILEWG 2007, Sorrento; 2006.
Selig, 1996
Murrary, 1994
McGhee, 1979, Adaptive locomotion of a multilegged robot over rough terrain, IEEE Trans Syst Man Cybern SMC-9, 176, 10.1109/TSMC.1979.4310180
Garcia, 2002, A comparative study of the stability margins for walking machines, Robotica, 20, 595, 10.1017/S0263574702004502
McGhee, 1968, On the stability properties of quadruped creeping gaits, Math Biosci, 3, 331, 10.1016/0025-5564(68)90090-4
Zhang, 1989, Gaits and geometry of a walking chair for the disabled, J Terramech, 26, 211, 10.1016/0022-4898(89)90037-2
Zhang, 1990, Stability analysis of wave-crab gaits of a quadruped, J Robot Syst, 7, 243, 10.1002/rob.4620070208
Wang XJ. A study of locomotion and force planning for multilegged walking robots. Ph.D. dissertation. Dept. Mech. Eng.&Sci., Huazhong Univ. of Tech.&Sci, Wuhan, China; 2005.
Wang ZY, Ding XL, Rovetta A. Structure design and locomotion analysis of a novel robot for lunar exploration. In: Twelfth IFToMM world congress, Besancon, France; 2007. p. 1–5.
Spenneberg D, Strack A, Hilljegerdes J, Zschenker H, Albrecht M, Backhaus T, et al. Aramies: a four-legged climbing and walking robot. In Proc. of the 10th international symposium on artificial intelligence, robotics and automation in space (i-SAIRAS), Sapporo, Japan; 2010.