MoS<sub>2</sub>/NiS Yolk–Shell Microsphere‐Based Electrodes for Overall Water Splitting and Asymmetric Supercapacitor

Small - Tập 15 Số 29 - 2019
Qing Qin1, Lulu Chen1, Tao Wei1, Xien Liu1
1Key Laboratory of Eco-chemical Engineering, Taishan scholar advantage and characteristic discipline team of Eco chemical process and technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China

Tóm tắt

AbstractRational designing of the composition and structure of electrode material is of great significance for achieving highly efficient energy storage and conversion in electrochemical energy devices. Herein, MoS2/NiS yolk–shell microspheres are successfully synthesized via a facile ionic liquid‐assisted one‐step hydrothermal method. With the favorable interface effect and hollow structure, the electrodes assembled with MoS2/NiS hybrid microspheres present remarkably enhanced electrochemical performance for both overall water splitting and asymmetric supercapacitors. In particular, to deliver a current density of 10 mA cm−2, the MoS2/NiS‐based electrolysis cell for overall water splitting only needs an output voltage of 1.64 V in the alkaline medium, lower than that of Pt/C–IrO2‐based electrolysis cells (1.70 V). As an electrode for supercapacitors, the MoS2/NiS hybrid microspheres exhibit a specific capacitance of 1493 F g−1 at current density of 0.2 A g−1, and remain 1165 F g−1 even at a large current density of 2 A g−1, implying outstanding charge storage capacity and excellent rate performance. The MoS2/NiS‐ and active carbon‐based asymmetric supercapacitor manifests a maximum energy density of 31 Wh kg−1 at a power density of 155.7 W kg−1, and remarkable cycling stability with a capacitance retention of approximately 100% after 10 000 cycles.

Từ khóa


Tài liệu tham khảo

10.1021/jacs.5b01072

10.1038/s41929-018-0063-z

10.1039/C1CS15060J

10.1002/adma.201606817

10.1021/acsnano.7b05050

10.1039/C6SC02083F

10.1038/nenergy.2016.184

10.1126/science.1249061

10.1021/cr500519c

10.1038/ncomms7430

10.1002/anie.201602237

10.1038/ncomms4754

10.1016/j.nanoen.2017.05.043

10.1002/adma.201404622

10.1002/adma.201501969

10.1021/ja5099066

10.1039/C5EE01155H

10.1038/ncomms5695

10.1126/science.1211934

10.1002/cctc.201000397

10.1039/C1CY00126D

10.1126/science.aad4998

10.1021/cs500070x

10.1002/adfm.200902295

10.1039/C1EE02426D

10.1016/j.nanoen.2015.10.035

10.1007/s12274-016-1093-y

10.1002/adma.201370101

10.1002/ange.201404604

10.1002/anie.201301622

10.1016/j.jpowsour.2014.04.061

Gao J., 2007, Cheminform, 38, 1428

10.1039/C8TA03304H

10.1016/j.apcatb.2010.09.025

10.1021/acscatal.6b03192

10.1016/S0038-1098(97)00273-1

10.1016/j.electacta.2017.02.032

10.1038/nmat3700

10.1039/C4NR02014F

10.1016/S0169-4332(99)00253-6

10.1016/j.carbon.2013.12.048

10.1002/aenm.201801478

10.1016/S0921-5093(03)00336-8

10.1016/j.jhazmat.2011.09.021

10.1039/c2cc33797e

10.1016/j.cej.2016.10.016

10.1002/aenm.201702787

10.1039/C7TA02268A

10.1002/chem.201203176

10.1039/c2ee02618j

10.1021/acsami.8b00716

10.1002/adfm.201401264

10.1038/ncomms3390

10.1021/acsami.5b02032

10.1021/acscatal.6b03192

10.1021/acs.chemmater.5b05006

10.1002/adma.201301911

10.1039/C7RA02910A

10.1039/C6CE00386A

10.1002/anie.201409776

10.1016/j.cej.2015.01.072

10.1016/j.mattod.2015.10.006

10.1039/C7TA05784A

10.1016/j.jpowsour.2014.09.113

10.1016/j.jpowsour.2014.06.030

10.1002/aenm.201401172

10.1021/acssuschemeng.7b00729

10.1016/S1003-6326(06)60389-0

10.1016/j.jpowsour.2014.09.144

10.1039/C2TA00163B

10.1039/C5TA02432C

10.1016/j.electacta.2014.07.075

10.1039/c2jm35307e

10.1039/c4cp00955j

10.1038/nmat1782

10.1038/ncomms7694

10.1038/ncomms13949

10.1002/aenm.201500981